36,99 €
36,99 €
inkl. MwSt.
Sofort per Download lieferbar
18 °P sammeln
36,99 €
Als Download kaufen
36,99 €
inkl. MwSt.
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
36,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Mathematische Modelle und Methoden sind in weiten Teilen der Wirtschaftswissenschaften unverzichtbar; dabei dient die Mathematik einerseits als Sprache zur Modellierung komplexer wirtschaftlicher Zusammenhänge, andererseits als Werkzeug zur Analyse wirtschaftswissenschaftlicher Modelle. Dieses Buch behandelt die wichtigsten Aspekte der Linearen Algebra und der Analysis. Schwerpunkte sind lineare Gleichungssysteme, lineare Differenzen- und Differentialgleichungen sowie lineare und nichtlineare Optimierungsprobleme unter Nebenbedingungen.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 22.44MB
Andere Kunden interessierten sich auch für
Dieter HoffmannAnalysis für Wirtschaftswissenschaftler und Ingenieure (eBook, PDF)36,99 €
Tomas GalMathematik für Wirtschaftswissenschaftler (eBook, PDF)38,66 €
Ingolf TerveerMathematik für Wirtschaftswissenschaften (eBook, PDF)38,99 €
Gerd KaerleinEinführung in die Mathematik für Ökonomen (eBook, PDF)15,28 €
Wilhelm RödderWirtschaftsmathematik für Studium und Praxis 2 (eBook, PDF)15,28 €
Walter TrockelEin mathematischer COUNTDOWN zur Wirtschaftswissenschaft (eBook, PDF)38,66 €
Walter PurkertBrückenkurs Mathematik für Wirtschaftswissenschaftler (eBook, PDF)35,96 €-
-
-
Mathematische Modelle und Methoden sind in weiten Teilen der Wirtschaftswissenschaften unverzichtbar; dabei dient die Mathematik einerseits als Sprache zur Modellierung komplexer wirtschaftlicher Zusammenhänge, andererseits als Werkzeug zur Analyse wirtschaftswissenschaftlicher Modelle. Dieses Buch behandelt die wichtigsten Aspekte der Linearen Algebra und der Analysis. Schwerpunkte sind lineare Gleichungssysteme, lineare Differenzen- und Differentialgleichungen sowie lineare und nichtlineare Optimierungsprobleme unter Nebenbedingungen.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 412
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783642977251
- Artikelnr.: 53101498
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 412
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783642977251
- Artikelnr.: 53101498
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Dr. Klaus D. Schmidt ist Inhaber des Lehrstuhls für Versicherungsmathematik an der Technischen Universität Dresden. Er studierte in Kiel und Zürich Mathematik mit Wirtschaftswissenschaften und Informatik und promovierte und habilitierte sich in Mannheim.
Formale Logik.- 1.1 Die Axiome von Peano.- 1.2 Aussagenlogik.- 1.3 Quantoren.- 1.4 Mathematische Schlußweisen.- 2 Mengenlehre.- 2.1 Mengen und ihre Elemente.- 2.2 Mengenalgebra.- 2.3 Relationen.- 2.4 Abbildungen.- 3 Zahlen.- 3.1 Die natürlichen Zahlen.- 3.2 Die reellen Zahlen.- 3.3 Die ganzen Zahlen und die rationalen Zahlen.- 3.4 Die komplexen Zahlen.- 3.5 Algebraische Strukturen.- 4 Vektoren.- 4.1 Vektoralgebra.- 4.2 Vektorräume.- 4.3 Vektorräume mit Norm.- 4.4 Vektorräume mit Skalarprodukt.- 5 Matrizen.- 5.1 Matrixalgebra.- 5.2 Matrizen als lineare Abbildungen.- 5.3 Quadratische Matrizen.- 5.4 Spur und Determinante.- 5.5 Reguläre Matrizen.- 5.6 Spezielle quadratische Matrizen.- 6 Lineare Gleichungssysteme.- 6.1 Das Austauschverfahren.- 6.2 Das Austauschverfahren als Algorithmus.- 6.3 Matrizengleichungen.- 6.4 Bestimmung von Kern und Rang.- 6.5 Bestimmung der Inversen einer regulären Matrix.- 7 Lineare Optimierung.- 7.1 Beispiele für lineare Optimierungsprobleme.- 7.2 Das Minimumproblem in Normalform.- 7.3 Basisdarstellungen und Basislösungen.- 7.4 Das Simplexkriterium.- 7.5 Das Simplexverfahren.- 7.6 Bestimmung einer zulässigen Basislösung.- 7.7 Algorithmische Lösung der Beispiele.- 8 Lineare Differenzengleichungen.- 8.1 Folgen.- 8.2 Lineare Differenzengleichungen 1. Ordnung.- 8.3 Lineare Differenzengleichungen 2. Ordnung.- 8.4 Der Differenzenoperator.- 9 Konvergenz von Folgen, Reihen und Produkten.- 9.1 Konvergenz von Folgen.- 9.2 Konvergenz von Reihen.- 9.3 Konvergenz von Produkten.- 10 Stetige Funktionen in einer Variablen.- 10.1 Stetigkeit.- 10.2 Stetige Funktionen.- 10.3 Spezielle stetige Funktionen.- 11 Differentialrechnung in einer Variablen.- 11.1 Differenzierbarkeit.- 11.2 Einmal differenzierbare Funktionen.- 11.3 Zweimal differenzierbareFunktionen.- 11.4 Ableitungen höherer Ordnung.- 12 Lineare Differentialgleichungen.- 12.1 Das unbestimmte Integral.- 12.2 Lineare Differentialgleichungen 1. Ordnung.- 12.3 Lineare Differentialgleichungen 2. Ordnung.- 12.4 Der Differentialoperator.- 13 Integralrechnung.- 13.1 Das bestimmte Integral.- 13.2 Uneigentliche Integrale.- 14 Differentialrechnung in mehreren Variablen.- 14.1 Konvergenz im Euklidischen Raum.- 14.2 Reelle Funktionen in mehreren Variablen.- 14.3 Stetigkeit.- 14.4 Partielle Differenzierbarkeit.- 14.5 Einmal partiell differenzierbare Funktionen.- 14.6 Zweimal partiell differenzierbare Funktionen.- 14.7 Optimierung unter Nebenbedingungen.- Literatur.- Stichwortverzeichnis.
Formale Logik.- 1.1 Die Axiome von Peano.- 1.2 Aussagenlogik.- 1.3 Quantoren.- 1.4 Mathematische Schlußweisen.- 2 Mengenlehre.- 2.1 Mengen und ihre Elemente.- 2.2 Mengenalgebra.- 2.3 Relationen.- 2.4 Abbildungen.- 3 Zahlen.- 3.1 Die natürlichen Zahlen.- 3.2 Die reellen Zahlen.- 3.3 Die ganzen Zahlen und die rationalen Zahlen.- 3.4 Die komplexen Zahlen.- 3.5 Algebraische Strukturen.- 4 Vektoren.- 4.1 Vektoralgebra.- 4.2 Vektorräume.- 4.3 Vektorräume mit Norm.- 4.4 Vektorräume mit Skalarprodukt.- 5 Matrizen.- 5.1 Matrixalgebra.- 5.2 Matrizen als lineare Abbildungen.- 5.3 Quadratische Matrizen.- 5.4 Spur und Determinante.- 5.5 Reguläre Matrizen.- 5.6 Spezielle quadratische Matrizen.- 6 Lineare Gleichungssysteme.- 6.1 Das Austauschverfahren.- 6.2 Das Austauschverfahren als Algorithmus.- 6.3 Matrizengleichungen.- 6.4 Bestimmung von Kern und Rang.- 6.5 Bestimmung der Inversen einer regulären Matrix.- 7 Lineare Optimierung.- 7.1 Beispiele für lineare Optimierungsprobleme.- 7.2 Das Minimumproblem in Normalform.- 7.3 Basisdarstellungen und Basislösungen.- 7.4 Das Simplexkriterium.- 7.5 Das Simplexverfahren.- 7.6 Bestimmung einer zulässigen Basislösung.- 7.7 Algorithmische Lösung der Beispiele.- 8 Lineare Differenzengleichungen.- 8.1 Folgen.- 8.2 Lineare Differenzengleichungen 1. Ordnung.- 8.3 Lineare Differenzengleichungen 2. Ordnung.- 8.4 Der Differenzenoperator.- 9 Konvergenz von Folgen, Reihen und Produkten.- 9.1 Konvergenz von Folgen.- 9.2 Konvergenz von Reihen.- 9.3 Konvergenz von Produkten.- 10 Stetige Funktionen in einer Variablen.- 10.1 Stetigkeit.- 10.2 Stetige Funktionen.- 10.3 Spezielle stetige Funktionen.- 11 Differentialrechnung in einer Variablen.- 11.1 Differenzierbarkeit.- 11.2 Einmal differenzierbare Funktionen.- 11.3 Zweimal differenzierbareFunktionen.- 11.4 Ableitungen höherer Ordnung.- 12 Lineare Differentialgleichungen.- 12.1 Das unbestimmte Integral.- 12.2 Lineare Differentialgleichungen 1. Ordnung.- 12.3 Lineare Differentialgleichungen 2. Ordnung.- 12.4 Der Differentialoperator.- 13 Integralrechnung.- 13.1 Das bestimmte Integral.- 13.2 Uneigentliche Integrale.- 14 Differentialrechnung in mehreren Variablen.- 14.1 Konvergenz im Euklidischen Raum.- 14.2 Reelle Funktionen in mehreren Variablen.- 14.3 Stetigkeit.- 14.4 Partielle Differenzierbarkeit.- 14.5 Einmal partiell differenzierbare Funktionen.- 14.6 Zweimal partiell differenzierbare Funktionen.- 14.7 Optimierung unter Nebenbedingungen.- Literatur.- Stichwortverzeichnis.







