55,95 €
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
55,95 €
Als Download kaufen
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
55,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
John PetrovicAdvanced Calculus (eBook, PDF)45,95 €
Daniele RitelliIntroductory Mathematical Analysis for Quantitative Finance (eBook, PDF)42,95 €
Vladimir KadetsA Course in Functional Analysis and Measure Theory (eBook, PDF)52,95 €
Yoshihiro SawanoMorrey Spaces (eBook, PDF)0,00 €
Steven G. KrantzReal Analysis and Foundations (eBook, PDF)56,95 €
Ronald B. GuentherAspects of Integration (eBook, PDF)162,95 €
Hari BercoviciMeasure and Integration (eBook, PDF)48,95 €-
-
-
Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 532
- Erscheinungstermin: 24. April 2015
- Englisch
- ISBN-13: 9781498702904
- Artikelnr.: 57069127
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 532
- Erscheinungstermin: 24. April 2015
- Englisch
- ISBN-13: 9781498702904
- Artikelnr.: 57069127
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Richard L. Wheeden is Distinguished Professor of Mathematics at Rutgers University, New Brunswick, New Jersey, USA. His primary research interests lie in the fields of classical harmonic analysis and partial differential equations, and he is the author or coauthor of more than 100 research articles. After earning his Ph.D. from the University of Chicago, Illinois, USA (1965), he held an instructorship there (1965-1966) and a National Science Foundation (NSF) Postdoctoral Fellowship at the Institute for Advanced Study, Princeton, New Jersey, USA (1966-1967).
Antoni Zygmund was Professor of Mathematics at the University of Chicago, Illinois, USA. He was earlier a professor at Mount Holyoke College, South Hadley, Massachusetts, USA, and the University of Pennsylvania, Philadelphia, USA. His years at the University of Chicago began in 1947, and in 1964, he was appointed Gustavus F. and Ann M. Swift Distinguished Service Professor there. He published extensively in many branches of analysis, including Fourier series, singular integrals, and differential equations. He is the author of the classical treatise Trigonometric Series and a coauthor (with S. Saks) of Analytic Functions. He was elected to the National Academy of Sciences in Washington, District of Columbia, USA (1961), as well as to a number of foreign academies.
Antoni Zygmund was Professor of Mathematics at the University of Chicago, Illinois, USA. He was earlier a professor at Mount Holyoke College, South Hadley, Massachusetts, USA, and the University of Pennsylvania, Philadelphia, USA. His years at the University of Chicago began in 1947, and in 1964, he was appointed Gustavus F. and Ann M. Swift Distinguished Service Professor there. He published extensively in many branches of analysis, including Fourier series, singular integrals, and differential equations. He is the author of the classical treatise Trigonometric Series and a coauthor (with S. Saks) of Analytic Functions. He was elected to the National Academy of Sciences in Washington, District of Columbia, USA (1961), as well as to a number of foreign academies.
Preliminaries. Functions of Bounded Variation and the Riemann-Stieltjes Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable Functions. The Lebesgue Integral. Repeated Integration. Differentiation. Lp Classes. Approximations of the Identity and Maximal Functions. Abstract Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis. The Fourier Transform. Fractional Integration. Weak Derivatives and Poincaré-Sobolev Estimates.
Preliminaries. Functions of Bounded Variation and the Riemann-Stieltjes
Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable
Functions. The Lebesgue Integral. Repeated Integration. Differentiation.
Lp Classes. Approximations of the Identity and Maximal Functions. Abstract
Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis.
The Fourier Transform. Fractional Integration. Weak Derivatives and
Poincaré-Sobolev Estimates.
Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable
Functions. The Lebesgue Integral. Repeated Integration. Differentiation.
Lp Classes. Approximations of the Identity and Maximal Functions. Abstract
Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis.
The Fourier Transform. Fractional Integration. Weak Derivatives and
Poincaré-Sobolev Estimates.
Preliminaries. Functions of Bounded Variation and the Riemann-Stieltjes Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable Functions. The Lebesgue Integral. Repeated Integration. Differentiation. Lp Classes. Approximations of the Identity and Maximal Functions. Abstract Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis. The Fourier Transform. Fractional Integration. Weak Derivatives and Poincaré-Sobolev Estimates.
Preliminaries. Functions of Bounded Variation and the Riemann-Stieltjes
Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable
Functions. The Lebesgue Integral. Repeated Integration. Differentiation.
Lp Classes. Approximations of the Identity and Maximal Functions. Abstract
Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis.
The Fourier Transform. Fractional Integration. Weak Derivatives and
Poincaré-Sobolev Estimates.
Integral. Lebesgue Measure and Outer Measure. Lebesgue Measurable
Functions. The Lebesgue Integral. Repeated Integration. Differentiation.
Lp Classes. Approximations of the Identity and Maximal Functions. Abstract
Integration. Outer Measure and Measure. A Few Facts from Harmonic Analysis.
The Fourier Transform. Fractional Integration. Weak Derivatives and
Poincaré-Sobolev Estimates.







