160,95 €
160,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
80 °P sammeln
160,95 €
160,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
80 °P sammeln
Als Download kaufen
160,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
80 °P sammeln
Jetzt verschenken
160,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
80 °P sammeln
  • Format: ePub

Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides,…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 69.23MB
Produktbeschreibung
Metal Oxides and Related Solids for Electrocatalytic Water Splitting reviews the fundamentals and strategies needed to design and fabricate metal oxide-based electrocatalysts. After an introduction to the key properties of transition metal oxides, materials engineering methods to optimize the performance of metal-oxide based electrocatalysts are discussed. Strategies reviewed include defect engineering, interface engineering and doping engineering. Other sections cover important categories of metal-oxide (and related solids) based catalysts, including layered hydroxides, metal chalcogenides, metal phosphides, metal nitrides, metal borides, and more. Each chapter introduces important properties and material design strategies, including composite and morphology design. There is also an emphasis on cost-effective materials design and fabrication for optimized performance for electrocatalytic water splitting applications. Lastly, the book touches on recently developed in-situ characterization methods applied to observe and control the material synthesis process. - Introduces metal oxide-based materials for electrocatalytic water splitting applications, including their key properties, synthesis, design and fabrication strategies - Reviews the most relevant materials design strategies, including defect engineering, interface engineering, and doping engineering - Discusses the pros and cons of metal oxide-based materials for water splitting applications to aid in materials selection

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Junlei Qi is a full Professor at State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (HIT). He received his B.S. and Ph.D. degrees under the supervision of Prof. Weitao Zheng from Jilin University in 2005 and 2010, respectively. He was a visiting scholar in Prof. Toriumi Akira's group (2012-2013) at the University of Tokyo, where he investigated single-crystal graphene micro-nano device manufacturing. Dr. Qi's current interests focus on vertical-standing arrays for electrochemical energy storage and conversion.