128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
64 °P sammeln
128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
64 °P sammeln
Als Download kaufen
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
64 °P sammeln
Jetzt verschenken
128,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
64 °P sammeln
  • Format: PDF

This book provides a comprehensive and practical framework for model-based control of MKC (mass-stiffness-damping or mass-spring-damper) systems, emphasizing seamless integration of theory and application. It explores the intricacies of modeling and control strategies tailored to the complexities of MKC systems, prevalent in various industrial applications. Clear explanations and real-world examples equip readers with advanced techniques for enhancing system performance, robustness, and adaptability in the face of nonlinearities and uncertainties.
Key topics include:
fundamentals of MKC
…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 18.49MB
Produktbeschreibung
This book provides a comprehensive and practical framework for model-based control of MKC (mass-stiffness-damping or mass-spring-damper) systems, emphasizing seamless integration of theory and application. It explores the intricacies of modeling and control strategies tailored to the complexities of MKC systems, prevalent in various industrial applications. Clear explanations and real-world examples equip readers with advanced techniques for enhancing system performance, robustness, and adaptability in the face of nonlinearities and uncertainties.

Key topics include:

  • fundamentals of MKC system modeling;
  • strategies for feedback linearization and dynamic decoupling; and
  • robust control techniques essential for managing real-world systems.


This book is an important resource for anyone dealing with multivariable systems, introducing innovative approaches to disturbance and uncertainty reduction, and decentralized adaptive pole placement. It addresses the need for robust and adaptable control strategies that can handle the inherent complexities and uncertainties of MKC systems, often encountered in industries like robotics, automotive engineering, and aerospace. Collectively, these topics help engineers and researchers deal with common challenges in designing controllers for systems with complex dynamics and interactions.

Model-Based Control of Mass-Stiffness-Damping Systems is valuable for control engineers, researchers, and postgraduate students looking to enhance their understanding and practical familiarity with advanced control methods. Offering a generally applicable and expandable control framework, this book enables immediate practical improvements in existing control schemes and a solid foundation for further exploration and innovation in the control of complex dynamic systems.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Hai-An Zhu is Chief Engineer at Omni Technologies. He previously held senior technology and business leadership roles across various divisions of General Electric in Asia. Before GE, he served as Chief Engineer at Philips in Singapore and as Manager of the Technology Center at FESTO, Singapore. His academic career includes serving as Lecturer at the Institute of Artificial Intelligence and Robotics at Xi'an Jiaotong University and as Research Scholar at the National University of Singapore.

Dr. Zhu holds B.Sc. and M.Sc. degrees in Control Engineering from Xi'an Jiaotong University, and a Ph.D. in Control Engineering from the National University of Singapore. His expertise is focused on advanced control techniques for complex real-world systems, bridging theoretical insights with practical applications. Throughout his career, Dr. Zhu has received many prestigious awards from governments, professional institutions, and industry clients, recognizing his contributions to scientific innovation and technological advancements that positively impact society.