128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
64 °P sammeln
128,95 €
Als Download kaufen
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
64 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
64 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
S-PLUS is a very popular statistical program for statistical researchers and data analysts. The program is available on both UNIX and Windows platforms.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 41.42MB
Andere Kunden interessierten sich auch für
James E. GentleComputational Statistics (eBook, PDF)72,95 €
Advances in GLIM and Statistical Modelling (eBook, PDF)72,95 €
COMPSTAT 1982 5th Symposium held at Toulouse 1982 (eBook, PDF)72,95 €
Christian RobertIntroducing Monte Carlo Methods with R (eBook, PDF)56,95 €
Phil SpectorData Manipulation with R (eBook, PDF)64,95 €
Recent Advances in Linear Models and Related Areas (eBook, PDF)72,95 €
Computing Science and Statistics (eBook, PDF)72,95 €-
-
-
S-PLUS is a very popular statistical program for statistical researchers and data analysts. The program is available on both UNIX and Windows platforms.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 498
- Erscheinungstermin: 9. März 2013
- Englisch
- ISBN-13: 9780387217062
- Artikelnr.: 44182527
- Verlag: Springer US
- Seitenzahl: 498
- Erscheinungstermin: 9. März 2013
- Englisch
- ISBN-13: 9780387217062
- Artikelnr.: 44182527
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Brian D. Ripley PhD, is Professor of Applied Statistics at Oxford University. He is a Fellow of the Institute of Mathematical Statistics and the Royal Society of Edinburgh and is also a member of the International Statistical Institute.
1 Introduction.- 1.1 A Quick Overview of S.- 1.2 Using S.- 1.3 An Introductory Session.- 1.4 What Next?.- 2 Data Manipulation.- 2.1 Objects.- 2.2 Connections.- 2.3 Data Manipulation.- 2.4 Tables and Cross-Classification.- 3 The S Language.- 3.1 Language Layout.- 3.2 More on S Objects.- 3.3 Arithmetical Expressions.- 3.4 Character Vector Operations.- 3.5 Formatting and Printing.- 3.6 Calling Conventions for Functions.- 3.7 Model Formulae.- 3.8 Control Structures.- 3.9 Array and Matrix Operations.- 3.10 Introduction to Classes and Methods.- 4 Graphics.- 4.1 Graphics Devices.- 4.2 Basic Plotting Functions.- 4.3 Enhancing Plots.- 4.4 Fine Control of Graphics.- 4.5 Trellis Graphics.- 5 Univariate Statistics.- 5.1 Probability Distributions.- 5.2 Generating Random Data.- 5.3 Data Summaries.- 5.4 Classical Univariate Statistics.- 5.5 Robust Summaries.- 5.6 Density Estimation.- 5.7 Bootstrap and Permutation Methods.- 6 Linear Statistical Models.- 6.1 An Analysis of Covariance Example.- 6.2 Model Formulae and Model Matrices.- 6.3 Regression Diagnostics.- 6.4 Safe Prediction.- 6.5 Robust and Resistant Regression.- 6.6 Bootstrapping Linear Models.- 6.7 Factorial Designs and Designed Experiments.- 6.8 An Unbalanced Four-Way Layout.- 6.9 Predicting Computer Performance.- 6.10 Multiple Comparisons.- 7 Generalized Linear Models.- 7.1 Functions for Generalized Linear Modelling.- 7.2 Binomial Data.- 7.3 Poisson and Multinomial Models.- 7.4 A Negative Binomial Family.- 7.5 Over-Dispersion in Binomial and Poisson GLMs.- 8 Non-Linear and Smooth Regression.- 8.1 An Introductory Example.- 8.2 Fitting Non-Linear Regression Models.- 8.3 Non-Linear Fitted Model Objects and Method Functions.- 8.4 Confidence Intervals for Parameters.- 8.5 Profiles.- 8.6 Constrained Non-Linear Regression.- 8.7 One-Dimensional Curve-Fitting.- 8.8 Additive Models.- 8.9 Projection-Pursuit Regression.- 8.10 Neural Networks.- 8.11 Conclusions.- 9 Tree-Based Methods.- 9.1 Partitioning Methods.- 9.2 Implementation in rpart.- 9.3 Implementation in tree.- 10 Random and Mixed Effects.- 10.1 Linear Models.- 10.2 Classic Nested Designs.- 10.3 Non-Linear Mixed Effects Models.- 10.4 Generalized Linear Mixed Models.- 10.5 GEE Models.- 11 Exploratory Multivariate Analysis.- 11.1 Visualization Methods.- 11.2 Cluster Analysis.- 11.3 Factor Analysis.- 11.4 Discrete Multivariate Analysis.- 12 Classification.- 12.1 Discriminant Analysis.- 12.2 Classification Theory.- 12.3 Non-Parametric Rules.- 12.4 Neural Networks.- 12.5 Support Vector Machines.- 12.6 Forensic Glass Example.- 12.7 Calibration Plots.- 13 Survival Analysis.- 13.1 Estimators of Survivor Curves.- 13.2 Parametric Models.- 13.3 Cox Proportional Hazards Model.- 13.4 Further Examples.- 14 Time Series Analysis.- 14.1 Second-Order Summaries.- 14.2 ARIMA Models.- 14.3 Seasonality.- 14.4 Nottingham Temperature Data.- 14.5 Regression with Autocorrelated Errors.- 14.6 Models for Financial Series.- 15 Spatial Statistics.- 15.1 Spatial Interpolation and Smoothing.- 15.2 Kriging.- 15.3 Point Process Analysis.- 16 Optimization.- 16.1 Univariate Functions.- 16.2 Special-Purpose Optimization Functions.- 16.3 General Optimization.- Appendices.- A Implementation-Specific Details.- A.1 Using S-PLUS under Unix / Linux.- A.2 Using S-PLUS under Windows.- A.3 Using R under Unix / Linux.- A.4 Using R under Windows.- A.5 For Emacs Users.- B The S-PLUS GUI.- C Datasets, Software and Libraries.- C.1 Our Software.- C.2 Using Libraries.- References.
1 Introduction.- 1.1 A Quick Overview of S.- 1.2 Using S.- 1.3 An Introductory Session.- 1.4 What Next?.- 2 Data Manipulation.- 2.1 Objects.- 2.2 Connections.- 2.3 Data Manipulation.- 2.4 Tables and Cross-Classification.- 3 The S Language.- 3.1 Language Layout.- 3.2 More on S Objects.- 3.3 Arithmetical Expressions.- 3.4 Character Vector Operations.- 3.5 Formatting and Printing.- 3.6 Calling Conventions for Functions.- 3.7 Model Formulae.- 3.8 Control Structures.- 3.9 Array and Matrix Operations.- 3.10 Introduction to Classes and Methods.- 4 Graphics.- 4.1 Graphics Devices.- 4.2 Basic Plotting Functions.- 4.3 Enhancing Plots.- 4.4 Fine Control of Graphics.- 4.5 Trellis Graphics.- 5 Univariate Statistics.- 5.1 Probability Distributions.- 5.2 Generating Random Data.- 5.3 Data Summaries.- 5.4 Classical Univariate Statistics.- 5.5 Robust Summaries.- 5.6 Density Estimation.- 5.7 Bootstrap and Permutation Methods.- 6 Linear Statistical Models.- 6.1 An Analysis of Covariance Example.- 6.2 Model Formulae and Model Matrices.- 6.3 Regression Diagnostics.- 6.4 Safe Prediction.- 6.5 Robust and Resistant Regression.- 6.6 Bootstrapping Linear Models.- 6.7 Factorial Designs and Designed Experiments.- 6.8 An Unbalanced Four-Way Layout.- 6.9 Predicting Computer Performance.- 6.10 Multiple Comparisons.- 7 Generalized Linear Models.- 7.1 Functions for Generalized Linear Modelling.- 7.2 Binomial Data.- 7.3 Poisson and Multinomial Models.- 7.4 A Negative Binomial Family.- 7.5 Over-Dispersion in Binomial and Poisson GLMs.- 8 Non-Linear and Smooth Regression.- 8.1 An Introductory Example.- 8.2 Fitting Non-Linear Regression Models.- 8.3 Non-Linear Fitted Model Objects and Method Functions.- 8.4 Confidence Intervals for Parameters.- 8.5 Profiles.- 8.6 Constrained Non-Linear Regression.- 8.7 One-Dimensional Curve-Fitting.- 8.8 Additive Models.- 8.9 Projection-Pursuit Regression.- 8.10 Neural Networks.- 8.11 Conclusions.- 9 Tree-Based Methods.- 9.1 Partitioning Methods.- 9.2 Implementation in rpart.- 9.3 Implementation in tree.- 10 Random and Mixed Effects.- 10.1 Linear Models.- 10.2 Classic Nested Designs.- 10.3 Non-Linear Mixed Effects Models.- 10.4 Generalized Linear Mixed Models.- 10.5 GEE Models.- 11 Exploratory Multivariate Analysis.- 11.1 Visualization Methods.- 11.2 Cluster Analysis.- 11.3 Factor Analysis.- 11.4 Discrete Multivariate Analysis.- 12 Classification.- 12.1 Discriminant Analysis.- 12.2 Classification Theory.- 12.3 Non-Parametric Rules.- 12.4 Neural Networks.- 12.5 Support Vector Machines.- 12.6 Forensic Glass Example.- 12.7 Calibration Plots.- 13 Survival Analysis.- 13.1 Estimators of Survivor Curves.- 13.2 Parametric Models.- 13.3 Cox Proportional Hazards Model.- 13.4 Further Examples.- 14 Time Series Analysis.- 14.1 Second-Order Summaries.- 14.2 ARIMA Models.- 14.3 Seasonality.- 14.4 Nottingham Temperature Data.- 14.5 Regression with Autocorrelated Errors.- 14.6 Models for Financial Series.- 15 Spatial Statistics.- 15.1 Spatial Interpolation and Smoothing.- 15.2 Kriging.- 15.3 Point Process Analysis.- 16 Optimization.- 16.1 Univariate Functions.- 16.2 Special-Purpose Optimization Functions.- 16.3 General Optimization.- Appendices.- A Implementation-Specific Details.- A.1 Using S-PLUS under Unix / Linux.- A.2 Using S-PLUS under Windows.- A.3 Using R under Unix / Linux.- A.4 Using R under Windows.- A.5 For Emacs Users.- B The S-PLUS GUI.- C Datasets, Software and Libraries.- C.1 Our Software.- C.2 Using Libraries.- References.







