This work evolved primarily out of industrial demands and post-graduate expectations, because a fine knowledge base in modern fluid dynamics is important, focusing on novel application areas such as microfluidics, mixture flows, fluid-structure interaction, biofluid dynamics, thermal flows, and fluid-particle transport. Building on courses in thermodynamics, fluid mechanics and solid mechanics as prerequisites as well as on a junior-level math background, a differential approach is most insightful to teach the fundamentals in fluid mechanics, to explain traditional and modern applications on an intermediate level, and to provide sufficient physical insight to understand results, later on generated with useful CFD software.
Pedagogical elements include a consistent 50/50 physics-mathematics approach when introducing new material, illustrating concepts, showing flow visualizations, and solving problems. The problem solution format strictly follows the pattern of system sketch, assumptions, and concept/approach-before starting the solution phase which consists of symbolic math model development (Appendix A), numerical solution, graphs, and comments on "physical insight". After some illustrative examples, most solved text examples have the same level of difficulty assuggested homework, quiz, test, and/or exam problems. The ultimate goals are that the more serious student can solve basic fluid dynamics problems independently, can provide physical insight, and can suggest, via a course project, system design improvements.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.