After the introduction (Chap. 1), Chap. 2 gives a quick overview of the historical progress of differential topology. Chap. 3 covers the basic subjects of spin geometry. Chaps 4 and 5 deal with the foundations of the Seiberg-Witten and the Bauer-Furuta theories. In Chaps 6 and 7, we present the basic theory of L²-cohomology, L²-Betti numbers, amenability, and residual finiteness of discrete groups.
In Chap. 8, we treat the Singer conjecture and describe the solution to the conjecture for Kähler hyperbolic manifolds. We then describe various variations of Furuta's 10/8-inequalities and how the aspherical 10/8-inequalities conjecture is induced. We provide the evidence by examining various classes of 4-manifolds, such as aspherical surface bundles and complex surfaces.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.








