Multimodal Biometric Identification System (eBook, PDF)
Case Study of Real-Time Implementation
Alle Infos zum eBook verschenken
Multimodal Biometric Identification System (eBook, PDF)
Case Study of Real-Time Implementation
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents a novel method of multimodal biometric fusion using a random selection of biometrics, which covers a new method of feature extraction, a new framework of sensor-level and feature-level fusion. Most of the biometric systems presently use unimodal systems, which have several limitations. Multimodal systems can increase the matching accuracy of a recognition system. This monograph shows how the problems of unimodal systems can be dealt with efficiently, and focuses on multimodal biometric identification and sensor-level, feature-level fusion. It discusses fusion in biometric…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Sampada DholeMultimodal Biometric Identification System (eBook, ePUB)52,95 €
- Security and Privacy Issues for IoT and WSN-based Real-time Applications (eBook, PDF)52,95 €
- AI, Blockchain, and Metaverse in Hospitality and Tourism Industry 4.0 (eBook, PDF)52,95 €
- Security and Privacy Issues for IoT and WSN-based Real-time Applications (eBook, ePUB)52,95 €
- Advanced Computing Techniques for Optimization in Cloud (eBook, PDF)52,95 €
- Qiu YiThe Design and Implementation of the RT-Thread Operating System (eBook, PDF)47,95 €
- AI, Blockchain, and Metaverse in Hospitality and Tourism Industry 4.0 (eBook, ePUB)52,95 €
-
-
-
. Presents a random selection of biometrics to ensure that the system is interacting with a live user.
. Offers a compilation of all techniques used for unimodal as well as multimodal biometric identification systems, elaborated with required justification and interpretation with case studies, suitable figures, tables, graphs, and so on.
. Shows that for feature-level fusion using contourlet transform features with LDA for dimension reduction attains more accuracy compared to that of block variance features.
. Includes contribution in feature extraction and pattern recognition for an increase in the accuracy of the system.
. Explains contourlet transform as the best modality-specific feature extraction algorithms for fingerprint, face, and palmprint.
This book is for researchers, scholars, and students of Computer Science, Information Technology, Electronics and Electrical Engineering, Mechanical Engineering, and people working on biometric applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 142
- Erscheinungstermin: 12. November 2024
- Englisch
- ISBN-13: 9781040148136
- Artikelnr.: 72273441
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 142
- Erscheinungstermin: 12. November 2024
- Englisch
- ISBN-13: 9781040148136
- Artikelnr.: 72273441
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Vinayak Bairagi has completed ME (Electronics) from Sinhgad COE, Pune, India, in 2007 (1st Rank in SPPU). Savitribai Phule Pune University has awarded him a PhD degree in Engineering. He has teaching experience of 13 years and research experience of 8 years. He has filed 12 patents and 5 copyrights in his technical field. He has published more than 60 papers, of which 26 papers are in international journals. He has authored/edited more than eight books/book chapters with multiple publishing concerns and he is a reviewer for nine scientific journals. He has received grants from DST SERB, UoP-BUCD, GYTI. He has received more than 14 awards, which include the National Level Young Engineer Award (2014), the ISTE National level Young Researcher Award (2015) for his excellence in the field of engineering, and IETE M N SAHA Memorial Award-2018. He is a member of INENG (UK), IETE (India), ISTE (India), and IEI & BMS (India). He had worked on Image Compression at the College of Engineering, Pune, under Pune University. His main research interests include Medical Imaging, Machine Learning, Computer-Aided Diagnosis, and Medical Signal Processing. Currently, he is associated with the AISSMS Institute of Information Technology, Pune, India, as Professor in Electronics and Telecommunication Engineering. He is a recognised PhD guide in Electronics Engineering of Savitribai Phule Pune University. Presently he is guiding seven PhD students.
viii
Author
Biography........................................................................................................x
Chapter 1
Introduction...........................................................................................1
1.1 Biometric Identification
System.................................................1
1.1.1 Enrolment
Module........................................................2
1.2 Current Status of Biometric Identification Systems...................3
1.3 Applications of Biometric
Systems............................................5
References.............................................................................................5
Chapter 2 An Overview of
Biometrics..................................................................6
2.1
Biometrics...................................................................................6
2.1.1 Advantages of
Biometrics.............................................7
2.1.2 Disadvantages of Biometrics.........................................8
2.1.3 Types of
Biometrics.......................................................8
2.2
Fingerprint..................................................................................8
2.2.1 Minutiae-based Technique............................................9
2.2.2 Correlation-based Technique........................................9
2.2.3 Advantages and Disadvantages of Fingerprint
Biometrics.....................................................................9
2.2.4 Applications of Fingerprinting.................................... 10
2.3 Iris
Recognition........................................................................
10
2.3.1 Advantages of Iris Technology.................................... 10
2.3.2 Disadvantages of Iris Technology............................... 10
2.3.3 Applications of Iris Recognition System..................... 11
2.3.4 Real-Life
Applications................................................ 11
2.4 Retinal Pattern
Biometrics....................................................... 11
2.4.1 Advantages of Retinal Recognition............................. 12
2.4.2 Disadvantages of Retinal Recognition........................ 12
2.5 Facial Recognition
Biometrics................................................. 12
2.5.1 Challenges in Face Recognition.................................. 13
2.5.2 Advantages of Biometric Facial Recognition.............. 13
2.5.3 Disadvantages of Biometric Face Recognition........... 13
2.5.4
Applications.................................................................
13
2.6
Handwriting..............................................................................
14
2.6.1 Advantages and Disadvantages of Handwriting
Recognition.................................................................
14
2.7 Voice
Biometric........................................................................
14
2.7.1
Advantages..................................................................
15
2.7.2
Disadvantages..............................................................
15
2.8 Ear
Recognition........................................................................
15
2.8.1
Advantages..................................................................
15
2.8.2
Disadvantages..............................................................
15
2.9
Summary..................................................................................
16
Chapter 3 Motivation behind Multimodal Biometric
Systems............................ 17
3.1
Introduction..............................................................................
17
3.1.1 Advantages of Multimodal Systems over
Unimodal Systems...................................................... 18
3.2 Multimodal Biometric Integration Architecture...................... 19
3.3 Multimodal Biometric Integration Scenarios...........................
19
3.4 Multimodal Biometric Fusion
Levels....................................... 21
3.4.1 Pre-mapping
Fusion.................................................... 21
3.4.2 Post-mapping
Fusion...................................................25
References...........................................................................................28
Chapter 4 Performance Measurement Parameters for Biometric
Systems.......... 31
4.1 Performance Measurement Parameters....................................
31
4.2
Materials...................................................................................
33
4.2.1 Fingerprint
Database...................................................34
4.2.2 Face
Database..............................................................34
4.2.3 Hand
Database............................................................ 35
4.3
Summary..................................................................................
35
Reference.............................................................................................
35
Chapter 5 Unimodal Biometric
Systems..............................................................36
5.1 Unimodal Biometric Identification
System..............................36
5.1.1 DWT Feature Extraction System................................ 37
5.1.2 Gabor Feature Extraction System...............................38
5.1.3 Curvelet
Transform.....................................................40
5.1.4 Contourlet
Transform.................................................. 41
5.2 Fingerprint as a Biometric
Modality........................................ 41
5.2.1 Techniques for Fingerprint Matching......................... 42
5.2.2 Minutiae-Based Feature Extraction System................ 42
5.2.3 Texture-Based Fingerprint Recognition System......... 45
5.3 Face as a Biometric
Modality...................................................49
5.3.1 Texture-Based Face Recognition System....................49
5.4 Hand Geometry as a Biometric Modality................................
51
5.4.1 Hand Geometry Recognition Using 12 Geometry
Features.......................................................................
55
5.4.2 Hand Geometry Recognition Using 21 Geometry
Features.......................................................................56
5.5 Palmprint as a Biometric
Modality.......................................... 58
5.5.1 Contourlet
Transform..................................................63
Contents vii
5.6 Euclidean Distance as a
Classifier............................................ 67
5.7
Summary..................................................................................
71
References...........................................................................................
71
Chapter 6 Multimodal Biometric Identification Systems Using
Sensor-Level
Fusion............................................................................
72
6.1 Multimodal Biometric Identification System...........................
72
6.2 Sensor-Level
Fusion................................................................. 72
6.3 Basic Structure for Sensor-Level
Fusion.................................. 73
6.4 Sensor-Level Fusion of Low-Frequency and High-
Frequency
Features...................................................................
75
6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78
6.6
Summary..................................................................................
81
Chapter 7 Multimodal Biometric Identification Systems Using
Feature-Level
Fusion...........................................................................82
7.1 Multimodal Biometric
System.................................................82
7.2 Feature-Level Fusion Using Block Variance Features.............83
7.2.1 Feature-Level Fusion of 128 Feature Vector...............83
7.2.2 Feature-Level Fusion of 32 Feature Vector.................85
7.2.3 Concatenated Features................................................
91
7.2.4 Sum
Features...............................................................92
7.2.5 Maximum
Features.....................................................92
7.2.6 Minimum
Features......................................................92
7.3 Feature-Level Fusion Using Contourlet Transform Features...92
7.4 Normalisation Technique for Hand Geometry Features..........95
7.5 Linear Discriminate Analysis
(LDA).......................................97
7.6
Summary................................................................................
100
Chapter 8 Result and
Discussion.......................................................................
101
8.1 Result and
Discussion............................................................. 101
8.1.1 Databases
Used......................................................... 101
8.1.2 Results of Performance Measurement
Parameters of the Biometric Systems....................... 101
8.1.3 Results of Performance Measurement
Parameters of Multimodal Recognition System....... 104
8.1.4 Score Distribution of Biometric System.................... 113
8.1.5
Analysis.....................................................................
120
8.2
Conclusions.............................................................................
122
8.3 Future
Scope...........................................................................124
Index.......................................................................................................................
125
viii
Author
Biography........................................................................................................x
Chapter 1
Introduction...........................................................................................1
1.1 Biometric Identification
System.................................................1
1.1.1 Enrolment
Module........................................................2
1.2 Current Status of Biometric Identification Systems...................3
1.3 Applications of Biometric
Systems............................................5
References.............................................................................................5
Chapter 2 An Overview of
Biometrics..................................................................6
2.1
Biometrics...................................................................................6
2.1.1 Advantages of
Biometrics.............................................7
2.1.2 Disadvantages of Biometrics.........................................8
2.1.3 Types of
Biometrics.......................................................8
2.2
Fingerprint..................................................................................8
2.2.1 Minutiae-based Technique............................................9
2.2.2 Correlation-based Technique........................................9
2.2.3 Advantages and Disadvantages of Fingerprint
Biometrics.....................................................................9
2.2.4 Applications of Fingerprinting.................................... 10
2.3 Iris
Recognition........................................................................
10
2.3.1 Advantages of Iris Technology.................................... 10
2.3.2 Disadvantages of Iris Technology............................... 10
2.3.3 Applications of Iris Recognition System..................... 11
2.3.4 Real-Life
Applications................................................ 11
2.4 Retinal Pattern
Biometrics....................................................... 11
2.4.1 Advantages of Retinal Recognition............................. 12
2.4.2 Disadvantages of Retinal Recognition........................ 12
2.5 Facial Recognition
Biometrics................................................. 12
2.5.1 Challenges in Face Recognition.................................. 13
2.5.2 Advantages of Biometric Facial Recognition.............. 13
2.5.3 Disadvantages of Biometric Face Recognition........... 13
2.5.4
Applications.................................................................
13
2.6
Handwriting..............................................................................
14
2.6.1 Advantages and Disadvantages of Handwriting
Recognition.................................................................
14
2.7 Voice
Biometric........................................................................
14
2.7.1
Advantages..................................................................
15
2.7.2
Disadvantages..............................................................
15
2.8 Ear
Recognition........................................................................
15
2.8.1
Advantages..................................................................
15
2.8.2
Disadvantages..............................................................
15
2.9
Summary..................................................................................
16
Chapter 3 Motivation behind Multimodal Biometric
Systems............................ 17
3.1
Introduction..............................................................................
17
3.1.1 Advantages of Multimodal Systems over
Unimodal Systems...................................................... 18
3.2 Multimodal Biometric Integration Architecture...................... 19
3.3 Multimodal Biometric Integration Scenarios...........................
19
3.4 Multimodal Biometric Fusion
Levels....................................... 21
3.4.1 Pre-mapping
Fusion.................................................... 21
3.4.2 Post-mapping
Fusion...................................................25
References...........................................................................................28
Chapter 4 Performance Measurement Parameters for Biometric
Systems.......... 31
4.1 Performance Measurement Parameters....................................
31
4.2
Materials...................................................................................
33
4.2.1 Fingerprint
Database...................................................34
4.2.2 Face
Database..............................................................34
4.2.3 Hand
Database............................................................ 35
4.3
Summary..................................................................................
35
Reference.............................................................................................
35
Chapter 5 Unimodal Biometric
Systems..............................................................36
5.1 Unimodal Biometric Identification
System..............................36
5.1.1 DWT Feature Extraction System................................ 37
5.1.2 Gabor Feature Extraction System...............................38
5.1.3 Curvelet
Transform.....................................................40
5.1.4 Contourlet
Transform.................................................. 41
5.2 Fingerprint as a Biometric
Modality........................................ 41
5.2.1 Techniques for Fingerprint Matching......................... 42
5.2.2 Minutiae-Based Feature Extraction System................ 42
5.2.3 Texture-Based Fingerprint Recognition System......... 45
5.3 Face as a Biometric
Modality...................................................49
5.3.1 Texture-Based Face Recognition System....................49
5.4 Hand Geometry as a Biometric Modality................................
51
5.4.1 Hand Geometry Recognition Using 12 Geometry
Features.......................................................................
55
5.4.2 Hand Geometry Recognition Using 21 Geometry
Features.......................................................................56
5.5 Palmprint as a Biometric
Modality.......................................... 58
5.5.1 Contourlet
Transform..................................................63
Contents vii
5.6 Euclidean Distance as a
Classifier............................................ 67
5.7
Summary..................................................................................
71
References...........................................................................................
71
Chapter 6 Multimodal Biometric Identification Systems Using
Sensor-Level
Fusion............................................................................
72
6.1 Multimodal Biometric Identification System...........................
72
6.2 Sensor-Level
Fusion................................................................. 72
6.3 Basic Structure for Sensor-Level
Fusion.................................. 73
6.4 Sensor-Level Fusion of Low-Frequency and High-
Frequency
Features...................................................................
75
6.5 Sensor-Level Fusion of Low-Frequency Features.................... 78
6.6
Summary..................................................................................
81
Chapter 7 Multimodal Biometric Identification Systems Using
Feature-Level
Fusion...........................................................................82
7.1 Multimodal Biometric
System.................................................82
7.2 Feature-Level Fusion Using Block Variance Features.............83
7.2.1 Feature-Level Fusion of 128 Feature Vector...............83
7.2.2 Feature-Level Fusion of 32 Feature Vector.................85
7.2.3 Concatenated Features................................................
91
7.2.4 Sum
Features...............................................................92
7.2.5 Maximum
Features.....................................................92
7.2.6 Minimum
Features......................................................92
7.3 Feature-Level Fusion Using Contourlet Transform Features...92
7.4 Normalisation Technique for Hand Geometry Features..........95
7.5 Linear Discriminate Analysis
(LDA).......................................97
7.6
Summary................................................................................
100
Chapter 8 Result and
Discussion.......................................................................
101
8.1 Result and
Discussion............................................................. 101
8.1.1 Databases
Used......................................................... 101
8.1.2 Results of Performance Measurement
Parameters of the Biometric Systems....................... 101
8.1.3 Results of Performance Measurement
Parameters of Multimodal Recognition System....... 104
8.1.4 Score Distribution of Biometric System.................... 113
8.1.5
Analysis.....................................................................
120
8.2
Conclusions.............................................................................
122
8.3 Future
Scope...........................................................................124
Index.......................................................................................................................
125