Multiple Correspondence Analysis and Related Methods (eBook, ePUB)
Redaktion: Greenacre, Michael; Blasius, Jorg
156,95 €
156,95 €
inkl. MwSt.
Sofort per Download lieferbar
78 °P sammeln
156,95 €
Als Download kaufen
156,95 €
inkl. MwSt.
Sofort per Download lieferbar
78 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
156,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
78 °P sammeln
Multiple Correspondence Analysis and Related Methods (eBook, ePUB)
Redaktion: Greenacre, Michael; Blasius, Jorg
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the su
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
Francois HussonExploratory Multivariate Analysis by Example Using R (eBook, ePUB)49,95 €
Francois HussonExploratory Multivariate Analysis by Example Using R (eBook, PDF)49,95 €
David W. GerbingR Data Analysis without Programming (eBook, ePUB)51,95 €
E. Michael NussbaumCategorical and Nonparametric Data Analysis (eBook, ePUB)70,95 €
Göran BroströmEvent History Analysis with R (eBook, ePUB)45,95 €
John FoxUsing the R Commander (eBook, ePUB)61,95 €
Mirjam MoerbeekPower Analysis of Trials with Multilevel Data (eBook, ePUB)46,95 €-
-
-
As a generalization of simple correspondence analysis, multiple correspondence analysis (MCA) is a powerful technique for handling larger, more complex datasets, including the high-dimensional categorical data often encountered in the social sciences, marketing, health economics, and biomedical research. Until now, however, the literature on the su
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 608
- Erscheinungstermin: 23. Juni 2006
- Englisch
- ISBN-13: 9781040067253
- Artikelnr.: 72519571
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 608
- Erscheinungstermin: 23. Juni 2006
- Englisch
- ISBN-13: 9781040067253
- Artikelnr.: 72519571
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Michael Greenacre, Jorg Blasius
Correspondence Analysis and Related Methods in Practice. From Simple to Multiple Correspondence Analysis. Divided by a Common Language: Analyzing and Visualizing Two-Way Arrays. Nonlinear Principal Component Analysis and Related Techniques. The Geometric Analysis of Structured Individuals × Variables Tables. Correlational Structure of Multi-Choice Data as Viewed from Dual Scaling. Validation Techniques in Multiple Correspondence Analysis. Multiple Correspondence Analysis of Subsets of Response Categories. Scaling Unidimensional Models with Multiple Correspondence Analysis. The Unfolding Fallacy Unveiled: A Comparison of Multiple Correspondence Analysis and Non-Metric IRT Models. Regularized Multiple Correspondence Analysis. The Evaluation of "Don't Know" Responses by Generalized Canonical Analysis. Multiple Factor Analysis for Contingency Tables. Simultaneous Analysis. Multiple Factor Analysis of Mixed Tables. Correspondence Analysis and Classification. Multiblock Canonical Correlation Analysis for Categorical Variables: Application to Epidemiological Data. Projection Pursuit Approach for Categorical Data. Correspondence Analysis and Categorical Conjoint Measurement. A Three-Step Approach to Assessing the Behavior of Survey Items in Cross-National Research using Biplots. Additive and Multiplicative Models for Three-Way Contingency Tables: Darroch (1974) Revisited. A New Model for Visualizing Interactions in Analysis of Variance. Logistic Biplots. Appendix: Computational of Multiple Correspondence Analysis, with Code in R.
Correspondence Analysis and Related Methods in Practice. From Simple to Multiple Correspondence Analysis. Divided by a Common Language: Analyzing and Visualizing Two-Way Arrays. Nonlinear Principal Component Analysis and Related Techniques. The Geometric Analysis of Structured Individuals × Variables Tables. Correlational Structure of Multi-Choice Data as Viewed from Dual Scaling. Validation Techniques in Multiple Correspondence Analysis. Multiple Correspondence Analysis of Subsets of Response Categories. Scaling Unidimensional Models with Multiple Correspondence Analysis. The Unfolding Fallacy Unveiled: A Comparison of Multiple Correspondence Analysis and Non-Metric IRT Models. Regularized Multiple Correspondence Analysis. The Evaluation of "Don't Know" Responses by Generalized Canonical Analysis. Multiple Factor Analysis for Contingency Tables. Simultaneous Analysis. Multiple Factor Analysis of Mixed Tables. Correspondence Analysis and Classification. Multiblock Canonical Correlation Analysis for Categorical Variables: Application to Epidemiological Data. Projection Pursuit Approach for Categorical Data. Correspondence Analysis and Categorical Conjoint Measurement. A Three-Step Approach to Assessing the Behavior of Survey Items in Cross-National Research using Biplots. Additive and Multiplicative Models for Three-Way Contingency Tables: Darroch (1974) Revisited. A New Model for Visualizing Interactions in Analysis of Variance. Logistic Biplots. Appendix: Computational of Multiple Correspondence Analysis, with Code in R.







