110,95 €
110,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
55 °P sammeln
110,95 €
110,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
55 °P sammeln
Als Download kaufen
110,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
55 °P sammeln
Jetzt verschenken
110,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
55 °P sammeln
  • Format: ePub

This book covers the general aspects of electrospinning and discusses the fundamental concepts that can be used to produce nanofibers with the help of mathematical models and equations. It also details the methods through which different polymeric structures can be included in conjugated polymers during electrospinning to form composites or blends of conjugated polymer nanofibers.

Produktbeschreibung
This book covers the general aspects of electrospinning and discusses the fundamental concepts that can be used to produce nanofibers with the help of mathematical models and equations. It also details the methods through which different polymeric structures can be included in conjugated polymers during electrospinning to form composites or blends of conjugated polymer nanofibers.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
A. Sezai Saraç is professor at the Department of Chemistry and Polymer Science & Technology, Istanbul Technical University (ITU), Turkey. He received his B.Sc. and M.Sc. in chemical engineering from ITU and his Ph.D. in chemistry from the University of Missouri-Rolla, USA. He was awarded a doctor honoris causa in chemical sciences by the Tajikistan Academy of Sciences in 2011. Prof. Saraç has authored about 200 scientific publications, 8 review articles and book chapters, and nearly 170 conference contributions. He has received several fellowships and grants and has played a key role in various international and national projects. His recent research interests are focused on thin conjugated polymeric nanofibers and their nanocomposites, modified carbon fibers, biosensor microelectrodes, electrocopolymerization, and their surface characterizations.