As you progress, the book covers machine learning fundamentals and classifiers, demonstrating how these techniques are applied in NLP. Practical examples using TF2 and Keras illustrate how to implement various NLP tasks. Advanced topics include the Transformer architecture, BERT-based models, and the GPT family of models, showcasing the latest advancements in the field.
The final chapters and appendices offer a comprehensive overview of related topics, including data and statistics, Python3, regular expressions, and data visualization with Matplotlib and Seaborn. Companion files with source code and figures ensure a hands-on learning experience. This book equips you with the knowledge and tools needed to excel in NLP and machine learning.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.