Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Convergence properties of strongly-damped semilinear wave equations.- Numerical solution of certain nonlinear parabolic partial differential equations.- The explicit solution of nonlinear ordinary and partial differential equations I. Conceptual ideas.- Uniform boundness and genralized inverses in liapunov-schmidt method for subharmonics.- Existence of radially symmetric solutions of strongly damped wave equations.- Strongly damped semilinear second order equations.- Nonlinear semigroup theory and viscosity solutions of Hamilton-Jacobi PDE.- Evolution equations with nonlinear boundary conditions.- Asymptotically smooth semigroups and applications.- The principle of spatial averaging and inertial manifolds for reaction-diffusion equations.- Applications of semigroup theory to reaction-diffusion systems.- Ultrasingularities in nonlinear waves.- A reaction-hyperbolic system in physiology.- Compact perturbations of linear m-dissipative operators which lack Gihman's property.- Two compactness lemmas.- The riccati equation: When nonlinearity reduces to linearity.
Convergence properties of strongly-damped semilinear wave equations.- Numerical solution of certain nonlinear parabolic partial differential equations.- The explicit solution of nonlinear ordinary and partial differential equations I. Conceptual ideas.- Uniform boundness and genralized inverses in liapunov-schmidt method for subharmonics.- Existence of radially symmetric solutions of strongly damped wave equations.- Strongly damped semilinear second order equations.- Nonlinear semigroup theory and viscosity solutions of Hamilton-Jacobi PDE.- Evolution equations with nonlinear boundary conditions.- Asymptotically smooth semigroups and applications.- The principle of spatial averaging and inertial manifolds for reaction-diffusion equations.- Applications of semigroup theory to reaction-diffusion systems.- Ultrasingularities in nonlinear waves.- A reaction-hyperbolic system in physiology.- Compact perturbations of linear m-dissipative operators which lack Gihman's property.- Two compactness lemmas.- The riccati equation: When nonlinearity reduces to linearity.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826