Nonstandard Analysis in Practice (eBook, PDF)
Redaktion: Diener, Francine; Diener, Marc
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Nonstandard Analysis in Practice (eBook, PDF)
Redaktion: Diener, Francine; Diener, Marc
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book introduces the graduate mathematician and researcher to the effective use of nonstandard analysis (NSA). It provides a tutorial introduction to this modern theory of infinitesimals, followed by nine examples of applications, including complex analysis, stochastic differential equations, differential geometry, topology, probability, integration, and asymptotics. It ends with remarks on teaching with infinitesimals.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 34.38MB
Andere Kunden interessierten sich auch für
The Strength of Nonstandard Analysis (eBook, PDF)72,95 €
Victoria Symposium on Nonstandard Analysis (eBook, PDF)28,95 €
Nonstandard Analysis for the Working Mathematician (eBook, PDF)80,95 €
Cédric VillaniOptimal Transport (eBook, PDF)112,95 €
Martin Andreas VäthNonstandard Analysis (eBook, PDF)30,95 €
Probability Measures on Groups VIII (eBook, PDF)28,95 €
Anthony TrombaTeichmüller Theory in Riemannian Geometry (eBook, PDF)48,95 €-
-
-
This book introduces the graduate mathematician and researcher to the effective use of nonstandard analysis (NSA). It provides a tutorial introduction to this modern theory of infinitesimals, followed by nine examples of applications, including complex analysis, stochastic differential equations, differential geometry, topology, probability, integration, and asymptotics. It ends with remarks on teaching with infinitesimals.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 250
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642577581
- Artikelnr.: 53140663
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 250
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642577581
- Artikelnr.: 53140663
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Tutorial.- 1.1 A new view of old sets.- 1.2 Using the extended language.- 1.3 Shadows and S-properties.- 1.4 Permanence principles.- 2. Complex analysis.- 2.1 Introduction.- 2.2 Tutorial.- 2.3 Complex iteration.- 2.4 Airy's equation.- 2.5 Answers to exercises.- 3. The Vibrating String.- 3.1 Introduction.- 3.2 Fourier analysis of (DEN).- 3.3 An interesting example.- 3.4 Solutions of limited energy.- 3.5 Conclusion.- 4. Random walks and stochastic differential equations.- 4.1 Introduction.- 4.2 The Wiener walk with infinitesimal steps.- 4.3 Equivalent processes.- 4.4 Diffusions. Stochastic differential equations.- 4.5 Probability law of a diffusion.- 4.6 Ito's calculus - Girsanov's theorem.- 4.7 The "density" of a diffusion.- 4.8 Conclusion.- 5. Infinitesimal algebra and geometry.- 5.1 A natural algebraic calculus.- 5.2 A decomposition theorem for a limited point.- 5.3 Infinitesimal riemannian geometry.- 5.4 The theory of moving frames.- 5.5 Infinitesimal linear algebra.- 6. General topology.- 6.1 Halos in topological spaces.- 6.2 What purpose do halos serve ?.- 6.3 The external definition of a topology.- 6.4 The power set of a topological space.- 6.5 Set-valued mappings and limits of sets.- 6.6 Uniform spaces.- 6.7 Answers to the exercises.- 7. Neutrices, external numbers, and external calculus.- 7.1 Introduction.- 7.2 Conventions; an example.- 7.3 Neutrices and external numbers.- 7.4 Basic algebraic properties.- 7.5 Basic analytic properties.- 7.6 Stirling's formula.- 7.7 Conclusion.- 8. An external probability order theorem with applications.- 8.1 Introduction.- 8.2 External probabilities.- 8.3 External probability order theorems.- 8.4 Weierstrass, Stirling, De Moivre-Laplace.- 9. Integration over finite sets.- 9.1 Introduction.- 9.2 S-integration.-9.3 Convergence in SL1(F).- 9.4 Conclusion.- 10. Ducks and rivers: three existence results.- 10.1 The ducks of the Van der Pol equation.- 10.2 Slow-fast vector fields.- 10.3 Robust ducks.- 10.4 Rivers.- 11. Teaching with infinitesimals.- 11.1 Meaning rediscovered.- 11.2 the evidence of orders of magnitude.- 11.3 Completeness and the shadows concept.- References.- List of contributors.
1. Tutorial.- 1.1 A new view of old sets.- 1.2 Using the extended language.- 1.3 Shadows and S-properties.- 1.4 Permanence principles.- 2. Complex analysis.- 2.1 Introduction.- 2.2 Tutorial.- 2.3 Complex iteration.- 2.4 Airy's equation.- 2.5 Answers to exercises.- 3. The Vibrating String.- 3.1 Introduction.- 3.2 Fourier analysis of (DEN).- 3.3 An interesting example.- 3.4 Solutions of limited energy.- 3.5 Conclusion.- 4. Random walks and stochastic differential equations.- 4.1 Introduction.- 4.2 The Wiener walk with infinitesimal steps.- 4.3 Equivalent processes.- 4.4 Diffusions. Stochastic differential equations.- 4.5 Probability law of a diffusion.- 4.6 Ito's calculus - Girsanov's theorem.- 4.7 The "density" of a diffusion.- 4.8 Conclusion.- 5. Infinitesimal algebra and geometry.- 5.1 A natural algebraic calculus.- 5.2 A decomposition theorem for a limited point.- 5.3 Infinitesimal riemannian geometry.- 5.4 The theory of moving frames.- 5.5 Infinitesimal linear algebra.- 6. General topology.- 6.1 Halos in topological spaces.- 6.2 What purpose do halos serve ?.- 6.3 The external definition of a topology.- 6.4 The power set of a topological space.- 6.5 Set-valued mappings and limits of sets.- 6.6 Uniform spaces.- 6.7 Answers to the exercises.- 7. Neutrices, external numbers, and external calculus.- 7.1 Introduction.- 7.2 Conventions; an example.- 7.3 Neutrices and external numbers.- 7.4 Basic algebraic properties.- 7.5 Basic analytic properties.- 7.6 Stirling's formula.- 7.7 Conclusion.- 8. An external probability order theorem with applications.- 8.1 Introduction.- 8.2 External probabilities.- 8.3 External probability order theorems.- 8.4 Weierstrass, Stirling, De Moivre-Laplace.- 9. Integration over finite sets.- 9.1 Introduction.- 9.2 S-integration.-9.3 Convergence in SL1(F).- 9.4 Conclusion.- 10. Ducks and rivers: three existence results.- 10.1 The ducks of the Van der Pol equation.- 10.2 Slow-fast vector fields.- 10.3 Robust ducks.- 10.4 Rivers.- 11. Teaching with infinitesimals.- 11.1 Meaning rediscovered.- 11.2 the evidence of orders of magnitude.- 11.3 Completeness and the shadows concept.- References.- List of contributors.







