Albrecht Pietsch
Nuclear Locally Convex Spaces (eBook, PDF)
77,95 €
77,95 €
inkl. MwSt.
Sofort per Download lieferbar
39 °P sammeln
77,95 €
Als Download kaufen
77,95 €
inkl. MwSt.
Sofort per Download lieferbar
39 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
77,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
39 °P sammeln
Albrecht Pietsch
Nuclear Locally Convex Spaces (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
No detailed description available for "Nuclear Locally Convex Spaces".
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 49.29MB
Andere Kunden interessierten sich auch für
M. Scott OsborneLocally Convex Spaces (eBook, PDF)46,95 €
P. MazetAnalytic Sets in Locally Convex Spaces (eBook, PDF)142,95 €
Maria FragoulopoulouLocally Convex Quasi *-Algebras and their Representations (eBook, PDF)44,95 €
François TrevesLocally Convex Spaces and Linear Partial Differential Equations (eBook, PDF)40,95 €
Jürgen VoigtA Course on Topological Vector Spaces (eBook, PDF)30,95 €
J. SchmetsSpaces of Vector-Valued Continuous Functions (eBook, PDF)18,95 €
Erhan ÇinlarReal and Convex Analysis (eBook, PDF)64,95 €-
-
-
No detailed description available for "Nuclear Locally Convex Spaces".
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: De Gruyter
- Seitenzahl: 204
- Erscheinungstermin: 21. Februar 2022
- Englisch
- ISBN-13: 9783112564103
- Artikelnr.: 75336007
- Verlag: De Gruyter
- Seitenzahl: 204
- Erscheinungstermin: 21. Februar 2022
- Englisch
- ISBN-13: 9783112564103
- Artikelnr.: 75336007
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0. Foundations.- 0.1. Topological Spaces.- 0.2. Metric Spaces.- 0.3. Linear Spaces.- 0.4. Semi-Norms.- 0.5. Locally Convex Spaces.- 0.6. The Topological Dual of a Locally Convex Space.- 0.7. Special Locally Convex Spaces.- 0.8. Banach Spaces.- 0.9. Hilbert Spaces.- 0.10. Continuous Linear Mappings in Locally Convex Spaces.- 0.11. The Normed Spaces Associated with a Locally Convex Space.- 0.12. Radon Measures.- 1. Summable Families.- 1.1. Summable Families of Numbers.- 1.2. Weakly Summable Families in Locally Convex Spaces.- 1.3. Summable Families in Locally Convex Spaces.- 1.4. Absolutely Summable Families in Locally Convex Spaces.- 1.5. Totally Summable Families in Locally Convex Spaces.- 1.6. Finite Dimensional Families in Locally Convex Spaces.- 2. Absolutely Summing Mappings.- 2.1. Absolutely Summing Mappings in Locally Convex Spaces.- 2.2. Absolutely Summing Mappings in Normed Spaces.- 2.3. A Characterization of Absolutely Summing Mappings in Normed Spaces.- 2.4. A Special Absolutely Summing Mappings.- 2.5. Hilbert-Schmidt Mappings.- 3. Nuclear Mappings.- 3.1. Nuclear Mappings in Normed Spaces.- 3.2. Quasinuclear Mappings in Normed Spaces.- 3.3. Products of Quasinuclear and Absolutely Summing Mappings in Normed Spaces.- 3.4. The Theorem of Dvoretzky and Rogers.- 4. Nuclear Locally Convex Spaces.- 4.1. Definition of Nuclear Locally Convex Spaces.- 4.2. Summable Families in Nuclear Locally Convex Spaces.- 4.3. The Topological Dual of Nuclear Locally Convex Spaces.- 4.4. Properties of Nuclear Locally Convex Spaces.- 5. Permanence Properties of Nuclearity.- 5.1. Subspaces and Quotient Spaces.- 5.2. Topological Products and Sums.- 5.3. Complete Hulls.- 5.4. Locally Convex Tensor Products.- 5.5. Spaces of Continuous Linear Mappings.- 6. Examples of Nuclear Locally ConvexSpaces.- 6.1. Sequence Spaces.- 6.2. Spaces of Infinitely Differentiable Functions.- 6.3. Spaces of Harmonic Functions.- 6.4. Spaces of Analytic Functions.- 7. Locally Convex Tensor Products.- 7.1. Definition of Locally Convex Tensor Products.- 7.2. Special Locally Convex Tensor Products.- 7.3. A Characterization of Nuclear Locally Convex Spaces.- 7.4. The Kernel Theorem.- 7.5. The Complete rc-Tensor Product of Normed Spaces.- 8. Operators of Type lp and s.- 8.1. The Approximation Numbers of Continuous Linear Mappings in Normed Spaces.- 8.2. Mappings of Type lp.- 8.3. The Approximation Numbers of Compact Mappings in Hilbert Spaces.- 8.4. Nuclear and Absolutely Summing Mappings.- 8.5. Mappings of Type s.- 8.6. A Characterization of Nuclear Locally Convex Spaces.- 9. Diametral and Approximative Dimension.- 9.1. The Diameter of Bounded Subsets in Normed Spaces.- 9.2. The Diametral Dimension of Locally Convex Spaces.- 9.3. The Diametral Dimension of Power Series Spaces.- 9.4. The Diametral Dimension of Nuclear Locally Convex Spaces .....- 9.5. A Characterization of Dual Nuclear Locally Convex Spaces.- 9.6. The ?-Entropy of Bounded Subsets in Normed Spaces.- 9.7. The Approximative Dimension of Locally Convex Spaces..- 9.8. The Approximative Dimension of Nuclear Locally Convex Spaces.- 10. Nuclear Locally Convex Spaces with Basis.- 10.1. Locally Convex Spaces with Basis.- 10.2. Representation of Nuclear Locally Convex Spaces with Basis.- 10.3. Bases in Special Nuclear Locally Convex Spaces.- 11. Universal Nuclear Locally Convex Spaces.- 11.1. Imbedding in the Product Space (?)1.- 11.2. Imbedding in the Product Space(?)1.- Table of Symbols.
0. Foundations.- 0.1. Topological Spaces.- 0.2. Metric Spaces.- 0.3. Linear Spaces.- 0.4. Semi-Norms.- 0.5. Locally Convex Spaces.- 0.6. The Topological Dual of a Locally Convex Space.- 0.7. Special Locally Convex Spaces.- 0.8. Banach Spaces.- 0.9. Hilbert Spaces.- 0.10. Continuous Linear Mappings in Locally Convex Spaces.- 0.11. The Normed Spaces Associated with a Locally Convex Space.- 0.12. Radon Measures.- 1. Summable Families.- 1.1. Summable Families of Numbers.- 1.2. Weakly Summable Families in Locally Convex Spaces.- 1.3. Summable Families in Locally Convex Spaces.- 1.4. Absolutely Summable Families in Locally Convex Spaces.- 1.5. Totally Summable Families in Locally Convex Spaces.- 1.6. Finite Dimensional Families in Locally Convex Spaces.- 2. Absolutely Summing Mappings.- 2.1. Absolutely Summing Mappings in Locally Convex Spaces.- 2.2. Absolutely Summing Mappings in Normed Spaces.- 2.3. A Characterization of Absolutely Summing Mappings in Normed Spaces.- 2.4. A Special Absolutely Summing Mappings.- 2.5. Hilbert-Schmidt Mappings.- 3. Nuclear Mappings.- 3.1. Nuclear Mappings in Normed Spaces.- 3.2. Quasinuclear Mappings in Normed Spaces.- 3.3. Products of Quasinuclear and Absolutely Summing Mappings in Normed Spaces.- 3.4. The Theorem of Dvoretzky and Rogers.- 4. Nuclear Locally Convex Spaces.- 4.1. Definition of Nuclear Locally Convex Spaces.- 4.2. Summable Families in Nuclear Locally Convex Spaces.- 4.3. The Topological Dual of Nuclear Locally Convex Spaces.- 4.4. Properties of Nuclear Locally Convex Spaces.- 5. Permanence Properties of Nuclearity.- 5.1. Subspaces and Quotient Spaces.- 5.2. Topological Products and Sums.- 5.3. Complete Hulls.- 5.4. Locally Convex Tensor Products.- 5.5. Spaces of Continuous Linear Mappings.- 6. Examples of Nuclear Locally ConvexSpaces.- 6.1. Sequence Spaces.- 6.2. Spaces of Infinitely Differentiable Functions.- 6.3. Spaces of Harmonic Functions.- 6.4. Spaces of Analytic Functions.- 7. Locally Convex Tensor Products.- 7.1. Definition of Locally Convex Tensor Products.- 7.2. Special Locally Convex Tensor Products.- 7.3. A Characterization of Nuclear Locally Convex Spaces.- 7.4. The Kernel Theorem.- 7.5. The Complete rc-Tensor Product of Normed Spaces.- 8. Operators of Type lp and s.- 8.1. The Approximation Numbers of Continuous Linear Mappings in Normed Spaces.- 8.2. Mappings of Type lp.- 8.3. The Approximation Numbers of Compact Mappings in Hilbert Spaces.- 8.4. Nuclear and Absolutely Summing Mappings.- 8.5. Mappings of Type s.- 8.6. A Characterization of Nuclear Locally Convex Spaces.- 9. Diametral and Approximative Dimension.- 9.1. The Diameter of Bounded Subsets in Normed Spaces.- 9.2. The Diametral Dimension of Locally Convex Spaces.- 9.3. The Diametral Dimension of Power Series Spaces.- 9.4. The Diametral Dimension of Nuclear Locally Convex Spaces .....- 9.5. A Characterization of Dual Nuclear Locally Convex Spaces.- 9.6. The ?-Entropy of Bounded Subsets in Normed Spaces.- 9.7. The Approximative Dimension of Locally Convex Spaces..- 9.8. The Approximative Dimension of Nuclear Locally Convex Spaces.- 10. Nuclear Locally Convex Spaces with Basis.- 10.1. Locally Convex Spaces with Basis.- 10.2. Representation of Nuclear Locally Convex Spaces with Basis.- 10.3. Bases in Special Nuclear Locally Convex Spaces.- 11. Universal Nuclear Locally Convex Spaces.- 11.1. Imbedding in the Product Space (?)1.- 11.2. Imbedding in the Product Space(?)1.- Table of Symbols.







