This book is organized into three parts encompassing 29 chapters. The first part presents a brief introduction to the history and developments of the zeta-function. The second part contains lectures on Selberg's considerable research studies on understanding the principles of several aspects of mathematics, including in modular forms, the Riemann zeta function, analytic number theory, sieve methods, discrete groups, and trace formula. The third part is devoted to Selberg's further research works on these topics, with particular emphasis on their practical applications. Some of these research studies, including the integral representations of Einstein series and L-functions; first eigenvalue for congruence groups; the zeta function of a Kleinian group; and the Waring's problem are discussed.
This book will prove useful to mathematicians, researchers, and students.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.