49,95 €
49,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
25 °P sammeln
49,95 €
49,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
25 °P sammeln
Als Download kaufen
49,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
25 °P sammeln
Jetzt verschenken
49,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
25 °P sammeln
  • Format: ePub

In this book, Kajikawa and Okamoto explain how to use Python to calculate and visualize the optical response of microscopic structures and systems. Throughout, the authors provide varied examples to instruct readers in the application of theoretical knowledge to real-world scenarios.
Electromagnetic field analysis is often necessary to determine the optical response of materials with microscopic structures. Although the principles are widely described, the manual calculation and visualization of results are not and remain challenging. Python is the ideal language to use for this as it has a
…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 3.54MB
Produktbeschreibung
In this book, Kajikawa and Okamoto explain how to use Python to calculate and visualize the optical response of microscopic structures and systems. Throughout, the authors provide varied examples to instruct readers in the application of theoretical knowledge to real-world scenarios.

Electromagnetic field analysis is often necessary to determine the optical response of materials with microscopic structures. Although the principles are widely described, the manual calculation and visualization of results are not and remain challenging. Python is the ideal language to use for this as it has a large functional library for visualizing analysis results and is suitable for programming beginners to use at low cost, so it has many advantages over languages like Fortran, BASIC, and C. Here, the authors introduce the application of Python to various electromagnetic field analysis scenarios in the field of nanophotonics. The first half of the book describes cases in which there is an analytical solution for the structure and addresses scenarios such as scattering and absorption in spherical and cylindrical structures and complex structures such as rotating ellipsoids, sphere-aggregated structures, and hemispherical structures. The second half describes methods including rigorous coupling wave analysis, finite-difference time-domain method and discrete dipole approximation for numerically solving varied structures. This book enables readers to conduct their own electromagnetic field analysis quickly, cheaply, and accurately without in-depth study of other complicated and time-consuming approaches or programs.

This book is invaluable for researchers and postgraduate students working in the fields of optics and photonics. Additionally, the contents are useful not only for those conducting electromagnetic field analysis but also those simulating physical, chemical, and biological phenomena.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Kotaro Kajikawa is Professor at Institute of Science Tokyo (formerly Tokyo Institute of Technology). He obtained his Bachelor's, Master's, and Doctorate degrees from Tokyo Institute of Technology in 1987, 1989, and 1992, respectively. Professor Kajikawa is a member and a fellow of The Japanese Society of Applied Physics. He is the author of around 140 journal articles and 10 books.

Takayuki Okamoto retired from RIKEN in 2022, where he worked as a research scientist since 1986. He obtained his Bachelor's, Master's and Doctorate degrees from Osaka University in 1981, 1983, and 1986, respectively. He is the author of over 80 refereed papers.