Francesco Maggi
Optimal Mass Transport on Euclidean Spaces (eBook, PDF)
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Francesco Maggi
Optimal Mass Transport on Euclidean Spaces (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 4.7MB
- FamilySharing(5)
Andere Kunden interessierten sich auch für
- V. G. DanilovMathematical Modelling of Heat and Mass Transfer Processes (eBook, PDF)40,95 €
- Cédric VillaniOptimal Transport (eBook, PDF)113,95 €
- Gershon WolanskyOptimal Transport (eBook, PDF)91,95 €
- Luigi AmbrosioLectures on Optimal Transport (eBook, PDF)40,95 €
- Luigi AmbrosioLectures on Optimal Transport (eBook, PDF)40,95 €
- Ludovic RiffordSub-Riemannian Geometry and Optimal Transport (eBook, PDF)57,95 €
- -23%11Fabio NicolaGlobal Pseudo-differential Calculus on Euclidean Spaces (eBook, PDF)73,95 €
-
-
-
Produktdetails
- Verlag: Cambridge University Press
- Erscheinungstermin: 16. November 2023
- Englisch
- ISBN-13: 9781009189262
- Artikelnr.: 70911869
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Francesco Maggi is Professor of Mathematics at the University of Texas at Austin. His research interests include the calculus of variations, partial differential equations, and optimal mass transport. He is the author of Sets of Finite Perimeter and Geometric Variational Problems published by Cambridge University Press.
Preface
Notation
Part I. The Kantorovich Problem: 1. An introduction to the Monge problem
2. Discrete transport problems
3. The Kantorovich problem
Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem
5. First order differentiability of convex functions
6. The Brenier-McCann theorem
7. Second order differentiability of convex functions
8. The Monge-Ampère equation for Brenier maps
Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form
10. Displacement convexity and equilibrium of gases
11. The Wasserstein distance W2 on P2(Rn)
12. Gradient flows and the minimizing movements scheme
13. The Fokker-Planck equation in the Wasserstein space
14. The Euler equations and isochoric projections
15. Action minimization, Eulerian velocities and Otto's calculus
Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line
17. Disintegration
18. Solution to the Monge problem with linear cost
19. An introduction to the needle decomposition method
Appendix A: Radon measures on Rn and related topics
Appendix B: Bibliographical Notes
Bibliography
Index.
Notation
Part I. The Kantorovich Problem: 1. An introduction to the Monge problem
2. Discrete transport problems
3. The Kantorovich problem
Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem
5. First order differentiability of convex functions
6. The Brenier-McCann theorem
7. Second order differentiability of convex functions
8. The Monge-Ampère equation for Brenier maps
Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form
10. Displacement convexity and equilibrium of gases
11. The Wasserstein distance W2 on P2(Rn)
12. Gradient flows and the minimizing movements scheme
13. The Fokker-Planck equation in the Wasserstein space
14. The Euler equations and isochoric projections
15. Action minimization, Eulerian velocities and Otto's calculus
Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line
17. Disintegration
18. Solution to the Monge problem with linear cost
19. An introduction to the needle decomposition method
Appendix A: Radon measures on Rn and related topics
Appendix B: Bibliographical Notes
Bibliography
Index.
Preface
Notation
Part I. The Kantorovich Problem: 1. An introduction to the Monge problem
2. Discrete transport problems
3. The Kantorovich problem
Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem
5. First order differentiability of convex functions
6. The Brenier-McCann theorem
7. Second order differentiability of convex functions
8. The Monge-Ampère equation for Brenier maps
Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form
10. Displacement convexity and equilibrium of gases
11. The Wasserstein distance W2 on P2(Rn)
12. Gradient flows and the minimizing movements scheme
13. The Fokker-Planck equation in the Wasserstein space
14. The Euler equations and isochoric projections
15. Action minimization, Eulerian velocities and Otto's calculus
Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line
17. Disintegration
18. Solution to the Monge problem with linear cost
19. An introduction to the needle decomposition method
Appendix A: Radon measures on Rn and related topics
Appendix B: Bibliographical Notes
Bibliography
Index.
Notation
Part I. The Kantorovich Problem: 1. An introduction to the Monge problem
2. Discrete transport problems
3. The Kantorovich problem
Part II. Solution of the Monge Problem with Quadratic Cost: the Brenier-McCann Theorem: 4. The Brenier theorem
5. First order differentiability of convex functions
6. The Brenier-McCann theorem
7. Second order differentiability of convex functions
8. The Monge-Ampère equation for Brenier maps
Part III. Applications to PDE and the Calculus of Variations and the Wasserstein Space: 9. Isoperimetric and Sobolev inequalities in sharp form
10. Displacement convexity and equilibrium of gases
11. The Wasserstein distance W2 on P2(Rn)
12. Gradient flows and the minimizing movements scheme
13. The Fokker-Planck equation in the Wasserstein space
14. The Euler equations and isochoric projections
15. Action minimization, Eulerian velocities and Otto's calculus
Part IV. Solution of the Monge Problem with Linear Cost: the Sudakov Theorem: 16. Optimal transport maps on the real line
17. Disintegration
18. Solution to the Monge problem with linear cost
19. An introduction to the needle decomposition method
Appendix A: Radon measures on Rn and related topics
Appendix B: Bibliographical Notes
Bibliography
Index.