Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Optimization Aided Design provides novel methods to use reinforced concrete in a particularly efficient way. Mathematical optimization is applied to the practical problems of concrete design. The aim is to employ the world's most widely used building material in the most economical way and thus substantially reduce CO2 emissions from cement and steel production as well as resource consumption of gravel, sand and water. Three topics are addressed. First, the identification of the structure. This means the question of the right outer shape such that slender load-bearing designs develop following…mehr
Optimization Aided Design provides novel methods to use reinforced concrete in a particularly efficient way. Mathematical optimization is applied to the practical problems of concrete design. The aim is to employ the world's most widely used building material in the most economical way and thus substantially reduce CO2 emissions from cement and steel production as well as resource consumption of gravel, sand and water. Three topics are addressed. First, the identification of the structure. This means the question of the right outer shape such that slender load-bearing designs develop following the flux of forces. In line with the stress affinity of the material, the structures are predominantly subjected to compression. Second, the reinforcement layout, which is oriented to the stress trajectories. Advantages arise particularly for walls, voluminous structural components, load introduction areas and cut-outs. Clear strut-and-tie models emerge that are directly convertible into reinforcement layouts. Third, the treatment of cross-sections. They are optimized in their shape and designed in their reinforcement. This also applies to sophisticated loading conditions (biaxial bending) and virtually arbitrary geometrical configurations. Parameterization allows the transfer to general cross-section types. The optimization aided methods are described extensively and in an illustrative manner. They are universally applicable and independent of standards, concrete types and reinforcements. They apply to normal strength to ultra-high performance concretes, to reinforcements made of steel, carbon or glass fibers, and to rebars as well as reinforcing fibers. Numerous illustrations and computation examples demonstrate their application. Moreover, practical applications are presented, including ultra-light concrete-steel beams, slender concrete solar collectors, and improved reinforcement layouts for tunnel lining. The book addresses students, researchers, and practitioners alike.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Georgios Gaganelis ist Planungsingenieur für Ingenieurbauwerke und freiberuflicher Berater im Bereich der Strukturoptimierung. Seine Promotion erhielt er 2020 an der Ruhr-Universität Bochum mit einer Arbeit über Optimierungsstrategien für Beton- und Stahl-Beton-Verbundtragwerke. Seine Forschungsinteressen liegen in der topologischen Optimierung und der baustoffgerechten Steuerung der Formfindung. Ein Schwerpunkt liegt auf ultra-leichten Konstruktionen, die mit minimalen Materialmengen auskommen. Peter Mark ist Universitätsprofessor für Massivbau an der Ruhr-Universität in Bochum. Er forscht auf den Gebieten der angewandten Optimierungsmethoden und des Betonleichtbaus seit 20 Jahren. Er promovierte 1994 und habilitierte sich 2006. Er ist Beratender Ingenieur und Prüfingenieur für Baustatik seit 2008 und maßgeblich beteiligt an zahlreichen Projekten des Brücken-, Tunnel- und Hochbaus. Patrick Forman ist Oberingenieur am Lehrstuhl für Massivbau an der Ruhr-Universität Bochum. Seine Promotion schloss er 2016 ab. Seit über 10 Jahren forscht er zu leichten Schalen und Stabstrukturen aus Hochleistungsmaterialien mit verschiedenartigen Optimierungsmethoden. Aktuell ist er Geschäftsführer und technischer Leiter eines interdisziplinären Großforschungsprogramms zu adaptiven Modulbauweisen.
Inhaltsangabe
Foreword by Manfred Curbach Foreword by Werner Sobek Preface Acknowledgments Acronyms 1 INTRODUCTION 2 FUNDAMENTALS OF REINFORCED CONCRETE DESIGN 2.1 Basic Principles 2.2. Verification Concept 2.3 Safety Concept 2.4 Materials 2.5 Load-bearing Behavior 3 FUNDAMENTALS OF STRUCTURAL OPTIMIZATION 3.1 Structural Optimization Approaches 3.2 Problem Statement 3.3 Lagrange Function 3.4 Sensitivity Analysis 3.5 Solution Methods 4 IDENTIFICATION OF STRUCTURES 4.1 One-material Structures 4.2 One-material Stress-biased Structures 4.3 Bi-material Structures 4.4 Examples 4.5 Applications 5 INTERNAL FORCE FLOW 5.1 Preliminaries 5.2 Continuum Topology Optimization (CTO) Approach 5.3 Truss Topology Optimization (TTO) Approach 5.4 Continuum-Truss Topology Optimization (CTTO) Approach 5.5 Examples 5.6 Applications 6 DESIGN OF CROSS-SECTIONS 6.1 Problem Statement 6.2 Equilibrium Iteration 6.3 Sectional Optimization 6.4 Solving 6.5 Parameterization 6.6 Examples BIBLIOGRAPHY LIST OF EXAMPLES Variation of volume fraction Variation of the filter radius Variation of material parameters Form finding of bridge pylons 1 Form finding of bridge pylons 2 Conceptual bridge design 1 Conceptual bridge design 2 Multi-span girder Multiple load cases Two load cases Material steering Material variation in bi-material design Filter radius with bi-material design Bi-material multi-span girder Bi-material girder with stepped support Bi-material arch bridge Deep beam 1 Wall with block-outs Corbel Cantilever beam Shear transfer at joints Deep beam 2 Frame corner Wall with eccentric block-out Corbel with horizontal force Stiening core with openings Deep beam 3 Deep beam 4 Deep beam 5 Strain plane of an unsymmetric RC section Footing with gapping joint Parameterized T-section Parameterized uniaxial bending Shape design of a RC I-section Shape optimization of a footing