Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Jochen Werner ist Professor am Institut für NumerischeMathematik der Georg-August-Universität in Göttingen.
Inhaltsangabe
1 Introduction, Examples, Survey.- 1.1 Optimization problems in elementary geometry.- 1.2 Calculus of variations.- 1.3 Approximation problems.- 1.4 Linear programming.- 1.5 Optimal Control.- 1.6 Survey.- 1.7 Literature.- 2 Linear Programming.- 2.1 Definition and interpretation of the dual program.- 2.2 The FARKAS-Lemma and the Theorem of CARATHEODORY.- 2.3 The strong duality theorem of linear programming.- 2.4 An application: relation between inradius and width of a polyhedron.- 2.5 Literature.- 3 Convexity in Linear and Normed Linear Spaces.- 3.1 Separating convex sets in linear spaces.- 3.2 Separation of convex sets in normed linear spaces.- 3.3 Convex functions.- 3.4 Literature.- 4 Convex Optimization Problems.- 4.1 Examples of convex optimization problems.- 4.2 Definition and motivation of the dual program. The weak duality theorem.- 4.3 Strong duality, KUHN-TUCKER saddle point theorem.- 4.4 Quadratic programming.- 4.5 Literature.- 5 Necessary Optimality Conditions.- 5.1 GATEAUX and FRECHET Differential.- 5.2 The Theorem of LYUSTERNIK.- 5.3 LAGRANGE multipliers. Theorems of KUHN-TUCKER and F. JOHN type.- 5.4 Necessary optimality conditions of first order in the calculus of variations and in optimal control theory.- 5.5 Necessary and sufficient optimality conditions of second order.- 5.6 Literature.- 6 Existence Theorems for Solutions of Optimization Problems.- 6.1 Functional analytic existence theorems.- 6.2 Existence of optimal controls.- 6.3 Literature.- Symbol Index.
1 Introduction, Examples, Survey.- 1.1 Optimization problems in elementary geometry.- 1.2 Calculus of variations.- 1.3 Approximation problems.- 1.4 Linear programming.- 1.5 Optimal Control.- 1.6 Survey.- 1.7 Literature.- 2 Linear Programming.- 2.1 Definition and interpretation of the dual program.- 2.2 The FARKAS-Lemma and the Theorem of CARATHEODORY.- 2.3 The strong duality theorem of linear programming.- 2.4 An application: relation between inradius and width of a polyhedron.- 2.5 Literature.- 3 Convexity in Linear and Normed Linear Spaces.- 3.1 Separating convex sets in linear spaces.- 3.2 Separation of convex sets in normed linear spaces.- 3.3 Convex functions.- 3.4 Literature.- 4 Convex Optimization Problems.- 4.1 Examples of convex optimization problems.- 4.2 Definition and motivation of the dual program. The weak duality theorem.- 4.3 Strong duality, KUHN-TUCKER saddle point theorem.- 4.4 Quadratic programming.- 4.5 Literature.- 5 Necessary Optimality Conditions.- 5.1 GATEAUX and FRECHET Differential.- 5.2 The Theorem of LYUSTERNIK.- 5.3 LAGRANGE multipliers. Theorems of KUHN-TUCKER and F. JOHN type.- 5.4 Necessary optimality conditions of first order in the calculus of variations and in optimal control theory.- 5.5 Necessary and sufficient optimality conditions of second order.- 5.6 Literature.- 6 Existence Theorems for Solutions of Optimization Problems.- 6.1 Functional analytic existence theorems.- 6.2 Existence of optimal controls.- 6.3 Literature.- Symbol Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826