-46%11
26,96 €
49,99 €**
26,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
13 °P sammeln
-46%11
26,96 €
49,99 €**
26,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
13 °P sammeln
Als Download kaufen
49,99 €****
-46%11
26,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
13 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,99 €****
-46%11
26,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
13 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Das Lehrbuch führt den Leser verständlich in die wichtigen Methoden und Aussagen der modernen Theorie partieller Differentialgleichungen ein. Dabei liegt der Schwerpunkt auf den elliptischen partiellen Differentialgleichungen. Ausgehend von der Laplace-Gleichung (harmonische Funktionen) entwickelt der Autor systematische Techniken, die auch auf größere Klassen von Differentialgleichungen, insbesondere auch auf nichtlineare Differentialgleichungen, anwendbar sind. Zahlreiche Übungsaufgaben veranschaulichen die Inhalte.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 31.63MB
Andere Kunden interessierten sich auch für
Wolfgang ArendtPartielle Differenzialgleichungen (eBook, PDF)34,99 €
Dirk LangemannSo einfach ist Mathematik - Partielle Differenzialgleichungen für Anwender (eBook, PDF)29,99 €
Klemens BurgPartielle Differentialgleichungen und funktionalanalytische Grundlagen (eBook, PDF)54,99 €
Klemens BurgPartielle Differentialgleichungen und funktionalanalytische Grundlagen (eBook, PDF)34,99 €
Wolfgang ArendtPartielle Differenzialgleichungen (eBook, PDF)17,98 €
Jan SwobodaGrundkurs partielle Differentialgleichungen (eBook, PDF)9,99 €
Ben SchweizerPartielle Differentialgleichungen (eBook, PDF)29,99 €-
-
-
Das Lehrbuch führt den Leser verständlich in die wichtigen Methoden und Aussagen der modernen Theorie partieller Differentialgleichungen ein. Dabei liegt der Schwerpunkt auf den elliptischen partiellen Differentialgleichungen. Ausgehend von der Laplace-Gleichung (harmonische Funktionen) entwickelt der Autor systematische Techniken, die auch auf größere Klassen von Differentialgleichungen, insbesondere auch auf nichtlineare Differentialgleichungen, anwendbar sind. Zahlreiche Übungsaufgaben veranschaulichen die Inhalte.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 291
- Erscheinungstermin: 11. März 2013
- Deutsch
- ISBN-13: 9783642588884
- Artikelnr.: 53094612
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 291
- Erscheinungstermin: 11. März 2013
- Deutsch
- ISBN-13: 9783642588884
- Artikelnr.: 53094612
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Einleitung: Was sind partielle Differentialgleichungen?.- 1. Die Laplacegleichung als Prototyp einer elliptischen partiellen Differentialgleichung zweiter Ordnung.- 1.1 Harmonische Funktionen. Greensche Funktionen.Das Dirichletproblem für die Kugel.- 1.2 Mittelwerteigenschaften harmonischer Funktionen. Subharmonische Funktionen. Das Maximumprinzip.- 2. Das Maximumprinzip.- 2.1 Das Maximumprinzip von E. Hopf.- 2.2 Das Maximumprinzip von Alexandrov und Bakelman.- 2.3 Maximumprinzipien für nichtlineare Differentialgleichungen.- 3. Existenzverfahren I: Methoden, die auf dem Maximumprinzip beruhen 53 3.1 Differenzenverfahren: Diskretisierung von Differentialgleichungen.- 3.2 Die Perronsche Methode.- 3.3 Das alternierende Verfahren von H. A. Schwarz.- 3.4 Randregularität.- 4. Existenzverfahren II: Parabolische Methoden. Die Wärmeleitungsgleichung 79 4.1 Die Wärmeleitungsgleichung: Definition und Maximumprin-zipien.- 4.2 Die Fundamentallösung der Wärmeleitungsgleichung. Bezie-hung zwischen Wärmeleitungsgleichung und Laplacegleichung.- 4.3 Das Anfangs-Randwertproblem für die Wärmeleitungsgleich-ung.- 4.4 Diskrete Verfahren.- 5. Exkurs: Die Wellengleichung und ihre Beziehungen zur Laplace-und Wärmeleitungsgleichung.- 5.1 Die eindimensionale Wellengleichung.- 5.2 Die Mittelwertmethode: Lösung der Wellengleichung mittels der Darbouxschen Gleichung.- 5.3 Die Energieungleichung und der Zusammenhang mit der Wär-meleitungsgleichung.- 6. Die Wärmeleitungsgleichung, Halbgruppen und Brownsche Bewegung.- 6.1 Halbgruppen.- 6.2 Infinitesimale Erzeuger von Halbgruppen.- 6.3 Brownsche Bewegung.- 7. Das Dirichletsche Prinzip. Variationsmethoden zur Lösung partieller Differentialgleichungen (Existenzverfahren III).- 7.1 Das Dirichletsche Prinzip.- 7.2 Der Sobolevraum W1,2.- 7.3Schwache Lösungen der Poissongleichung.- 7.4 Quadratische Variationsprobleme.- 7.5 Abstrakte Hilbertraumformulierung des Variationsproblems. Ausblick auf die Methode der finiten Elemente.- 8. Sobolevräume und die L2-Regularitätstheorie 177 8.1 Allgemeine Sobolevräume. Einbettungssätze von Sobolev, Morrey und John-Nirenberg.- 8.2 Die L2-Regularitätstheorie: Innere Regularität schwacher Lösungen der Poissongleichung.- 8.3 Regularität am Rande und Regularitätsaussagen für Lösun-gen allgemeiner linearer elliptischer Differentialgleichungen.- 9. Starke Lösungen.- 9.1 Die Regularitätstheorie der starken Lösungen.- 9.2 Ausblick auf die LP-Regularitätstheorie und Anwendungen auf Lösungen semilinearer elliptischer Gleichungen.- 10. Die Schaudersche Regularitätstheorie und die Kontinuitäts-methode (Existenzverfahren IV).- 10.1 Die Ca-Regularitätstheorie für die Poissongleichung.- 10.2 Die Schauderschen Abschätzungen.- 10.3 Existenzverfahren IV: Die Kontinuitätsmethode.- 11. Die Mosersche Iterationstechnik und der Regularitätssatz von de Giorgi und Nash.- 11.1 Die Mosersche Harnackungleichung.- 11.2 Eigenschaften von Lösungen elliptischer Gleichungen.- 11.3 Die Regularität von Minima von Variationsproblemen.- A. Banach-und Hilberträume. Die LP-Räume.- Notationsindex.
Einleitung: Was sind partielle Differentialgleichungen?.- 1. Die Laplacegleichung als Prototyp einer elliptischen partiellen Differentialgleichung zweiter Ordnung.- 1.1 Harmonische Funktionen. Greensche Funktionen.Das Dirichletproblem für die Kugel.- 1.2 Mittelwerteigenschaften harmonischer Funktionen. Subharmonische Funktionen. Das Maximumprinzip.- 2. Das Maximumprinzip.- 2.1 Das Maximumprinzip von E. Hopf.- 2.2 Das Maximumprinzip von Alexandrov und Bakelman.- 2.3 Maximumprinzipien für nichtlineare Differentialgleichungen.- 3. Existenzverfahren I: Methoden, die auf dem Maximumprinzip beruhen 53 3.1 Differenzenverfahren: Diskretisierung von Differentialgleichungen.- 3.2 Die Perronsche Methode.- 3.3 Das alternierende Verfahren von H. A. Schwarz.- 3.4 Randregularität.- 4. Existenzverfahren II: Parabolische Methoden. Die Wärmeleitungsgleichung 79 4.1 Die Wärmeleitungsgleichung: Definition und Maximumprin-zipien.- 4.2 Die Fundamentallösung der Wärmeleitungsgleichung. Bezie-hung zwischen Wärmeleitungsgleichung und Laplacegleichung.- 4.3 Das Anfangs-Randwertproblem für die Wärmeleitungsgleich-ung.- 4.4 Diskrete Verfahren.- 5. Exkurs: Die Wellengleichung und ihre Beziehungen zur Laplace-und Wärmeleitungsgleichung.- 5.1 Die eindimensionale Wellengleichung.- 5.2 Die Mittelwertmethode: Lösung der Wellengleichung mittels der Darbouxschen Gleichung.- 5.3 Die Energieungleichung und der Zusammenhang mit der Wär-meleitungsgleichung.- 6. Die Wärmeleitungsgleichung, Halbgruppen und Brownsche Bewegung.- 6.1 Halbgruppen.- 6.2 Infinitesimale Erzeuger von Halbgruppen.- 6.3 Brownsche Bewegung.- 7. Das Dirichletsche Prinzip. Variationsmethoden zur Lösung partieller Differentialgleichungen (Existenzverfahren III).- 7.1 Das Dirichletsche Prinzip.- 7.2 Der Sobolevraum W1,2.- 7.3Schwache Lösungen der Poissongleichung.- 7.4 Quadratische Variationsprobleme.- 7.5 Abstrakte Hilbertraumformulierung des Variationsproblems. Ausblick auf die Methode der finiten Elemente.- 8. Sobolevräume und die L2-Regularitätstheorie 177 8.1 Allgemeine Sobolevräume. Einbettungssätze von Sobolev, Morrey und John-Nirenberg.- 8.2 Die L2-Regularitätstheorie: Innere Regularität schwacher Lösungen der Poissongleichung.- 8.3 Regularität am Rande und Regularitätsaussagen für Lösun-gen allgemeiner linearer elliptischer Differentialgleichungen.- 9. Starke Lösungen.- 9.1 Die Regularitätstheorie der starken Lösungen.- 9.2 Ausblick auf die LP-Regularitätstheorie und Anwendungen auf Lösungen semilinearer elliptischer Gleichungen.- 10. Die Schaudersche Regularitätstheorie und die Kontinuitäts-methode (Existenzverfahren IV).- 10.1 Die Ca-Regularitätstheorie für die Poissongleichung.- 10.2 Die Schauderschen Abschätzungen.- 10.3 Existenzverfahren IV: Die Kontinuitätsmethode.- 11. Die Mosersche Iterationstechnik und der Regularitätssatz von de Giorgi und Nash.- 11.1 Die Mosersche Harnackungleichung.- 11.2 Eigenschaften von Lösungen elliptischer Gleichungen.- 11.3 Die Regularität von Minima von Variationsproblemen.- A. Banach-und Hilberträume. Die LP-Räume.- Notationsindex.







