Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Photonics, a volume in the Interface Transmission Tutorial Book series, describes the science of photonic transmission properties of the interfaces of composite materials systems and devices. The book's authors review the general analysis methods of interface transmission, give many examples, and apply these methods to photonic applications. Applications discussed include photonic crystals, materials, devices and circuits. - Offers a unique approach on photonics from the interfacial transmission point-of-view - Reviews the interface transmission properties of composite materials for photonics…mehr
Photonics, a volume in the Interface Transmission Tutorial Book series, describes the science of photonic transmission properties of the interfaces of composite materials systems and devices. The book's authors review the general analysis methods of interface transmission, give many examples, and apply these methods to photonic applications. Applications discussed include photonic crystals, materials, devices and circuits. - Offers a unique approach on photonics from the interfacial transmission point-of-view - Reviews the interface transmission properties of composite materials for photonics applications - Authored by world-leading experts on interface transmission
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Léonard Dobrzynski is Emeritus Research Professor at CNRS, Lille University, France. His research interests focus on interface science, phononics, magnonics, and resonance.Abdellatif Akjouj is Professor at the University of Lille in France. His scientific activities deal with theory and modelling of wave propagation and elementary excitations in nanostructured materials, more particularly: nanoplasmonics, photonics, magnonics, phononics and optomechanics.El Houssaine El Boudouti is Professor in the Department of Physics at Université Mohammed Premier, Oujda, Morocco. His research interest concerns elementary excitations in composite materials such as phononic, photonic, electronic, and magnonic crystals.Dr. Gaëtan Lévêque is a Professor at the National Center for Scientific Research, Lille University 1, Villeneuve d'Ascq, France.Housni Al-Wahsh is Professor of Theoretical Physics and Head of the Engineering, Mathematics, and Physics Department, Faculty of Engineering, Benha University, Cairo, Egypt. He is primarily interested in the physical properties of electronic, plasmonic and magnonic crystals.Dr. Yan Pennec is a Professor at the National Center for Scientific Research, Lille University 1, Villeneuve d'Ascq, France.Abdelkrim Talbi is a Professor at the University of Lille in France. His research focuses on MEMS and NEMS, metamaterials, and microfluidics.Dr. Bahram Djafari-Rouhani is a Professor at the National Center for Scientific Research, Lille University 1, Villeneuve d'Ascq, France.
Inhaltsangabe
Part One Photonic paths
1 Open loop 2 Closed loop 3 Path states 4 Open loop examples 5 Closed loop examples 6 Closed loop and stubs 7 Eigenfunction rules 8 General wave perspectives
Part Two Photonic circuits
9 Electromagnetic induced transparency, induced absorption, and Fano resonances in photonic circuits 10 Photonic demultiplexers based on Fano and induced transparency resonances 11 Photonic monomode circuits: comb structures 12 Serial loop structures: photonic bandgaps, con?ned, cavity, and surface modes 13 Fibonacci loop structures: bandgaps, power law, scaling law, con?ned and surface modes 14 One-dimensional photonic waveguide for ?ltering and demultiplexing 15 Silicon nanowires and nanopillars for photovoltaic 16 Transmission line photonic crystals: a comparison of Green's formalism, lumped circuit element model, and ?nite element method
Part Three Photonic materials
17 Interface response function in layered photonic materials 18 Optical Tamm states in semiin?nite layered photonic crystals 19 Optical waves in ?nite layered photonic crystals 19 Optical waves in ?nite layered photonic crystals 20 Omnidirectional bandgaps and selective transmission in layered photonic crystals 21 Layered photonic crystals with left-handed materials 22 Superluminal, negative delay times and selective transmission in isotropic-anisotropic layered media 23 Multilayered structures based one dimensional photonic crystals for MEMS applications
1 Open loop 2 Closed loop 3 Path states 4 Open loop examples 5 Closed loop examples 6 Closed loop and stubs 7 Eigenfunction rules 8 General wave perspectives
Part Two Photonic circuits
9 Electromagnetic induced transparency, induced absorption, and Fano resonances in photonic circuits 10 Photonic demultiplexers based on Fano and induced transparency resonances 11 Photonic monomode circuits: comb structures 12 Serial loop structures: photonic bandgaps, con?ned, cavity, and surface modes 13 Fibonacci loop structures: bandgaps, power law, scaling law, con?ned and surface modes 14 One-dimensional photonic waveguide for ?ltering and demultiplexing 15 Silicon nanowires and nanopillars for photovoltaic 16 Transmission line photonic crystals: a comparison of Green's formalism, lumped circuit element model, and ?nite element method
Part Three Photonic materials
17 Interface response function in layered photonic materials 18 Optical Tamm states in semiin?nite layered photonic crystals 19 Optical waves in ?nite layered photonic crystals 19 Optical waves in ?nite layered photonic crystals 20 Omnidirectional bandgaps and selective transmission in layered photonic crystals 21 Layered photonic crystals with left-handed materials 22 Superluminal, negative delay times and selective transmission in isotropic-anisotropic layered media 23 Multilayered structures based one dimensional photonic crystals for MEMS applications
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826