Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Perfect for any statistics student or researcher, this book offers hands-on guidance on how to interpret and discuss your results in a way that not only gives them meaning, but also achieves maximum impact on your target audience. No matter what variables your data involves, it offers a roadmap for analysis and presentation that can be extended to other models and contexts. Focused on best practices for building statistical models and effectively communicating their results, this book helps you: - Find the right analytic and presentation techniques for your type of data -…mehr
Perfect for any statistics student or researcher, this book offers hands-on guidance on how to interpret and discuss your results in a way that not only gives them meaning, but also achieves maximum impact on your target audience. No matter what variables your data involves, it offers a roadmap for analysis and presentation that can be extended to other models and contexts.
Focused on best practices for building statistical models and effectively communicating their results, this book helps you: - Find the right analytic and presentation techniques for your type of data - Understand the cognitive processes involved in decoding information - Assess distributions and relationships among variables - Know when and how to choose tables or graphs - Build, compare, and present results for linear and non-linear models - Work with univariate, bivariate, and multivariate distributions - Communicate the processes involved in and importance of your results.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Robert Andersen is Professor of Business, Economics and Public Policy, and Professor of Strategy at the Ivey Business School, Western Univeristy. He is also cross-appointed in the Departments of Sociology, Political Science, and Statistics and Actuarial Science. His previous appointments include Distinguished Professor of Social Science at the University of Toronto, Senator William McMaster Chair in Political Sociology at McMaster University, and Senior Research Fellow at the University of Oxford.
Andersen's research expertise is in social statistics, social stratification, and political economy. Much of his recent research has explored the cross-national relationships between economic conditions, especially income inequality, and a wide array of attitudes and behaviours important for liberal democracy and a successful business environment, including social trust, tolerance, civic participation, support for democracy and attitudes toward public policy. His published research includes Modern Methods for Robust Regression (Sage, 2008), and more than 70 academic papers including articles in the Annual Review of Sociology, American Journal of Political Science, American Sociological Review, British Journal of Political Science, British Journal of Sociology, Journal of Politics, Journal of the Royal Statistical Society, and Sociological Methodology. Andersen has provided consulting for the United Nations, the European Commission, the Canadian Government and the Council of Ministers of Education, Canada.
Inhaltsangabe
Chapter 1: Some Foundation What is a 'Model'? Statistical Inference Part A: General Principles of Effective Presentation Chapter 2: Best Practices for Graphs and Tables When to use Tables and Graphs Constructing Effective Tables Constructing Clear and Informative Graphs Chapter 3: Methods for Visualizing Distributions Displaying the Distributions of Categorical Variables Displaying Distributions of Quantitative Variables Transformations Chapter 4: Exploring and Describing Relationships Two Categorical Variables Categorical Explanatory Variable and Quantitative Dependent Variable Two quantitative Variables Multivariate Displays Part B: The Linear Model Chapter 5: The Linear Regression Model Ordinary Least Squares Regression Hypothesis tests and confidence intervals Assessing and Comparing Model Fit Relative Importance of Predictors Interpreting and presenting OLS models: Some empirical examples Linear Probability Model Chapter 6: Assessing the Impact and Importance of Multi-category Explanatory Variables Coding Multi-category Explanatory Variables Revisiting Statistical Significance: Multi-category Predictors Relative importance of sets of regressors Graphical Presentation of Additive Effects Chapter 7: Identifying and Handling Problems in Linear Models Nonlinearity Influential Observations Heteroskedasticity Nonnormality Chapter 8: Modelling and Presentation of Curvilinear Effects Curvilinearity in the Linear Model Framework Nonlinear Transformations Polynomial Regression Regression Splines Nonparametric Regression Generalized Additive Models Chapter 9: Interaction Effects in Linear Models Understanding Interaction Effects Interactions Between Two Categorical Variables Interactions Between One Categorical Variable and One Quantitative Variable Interactions Between Two Continuous Variables Interaction Effects: Some Cautions and Recommendations Part C: The Generalized Linear Model and Extensions Chapter 10: Generalized Linear Models Basics of the Generalized Linear Model Maximum Likelihood Estimation Hypothesis tests and confidence intervals Assessing Model Fit Empirical Example: Using Poisson Regression to Predict Counts Understanding Effects of Variables Measuring Variable Importance Model Diagnostics Chapter 11: Categorical Dependent Variables Regression Models for Binary Outcomes Interpreting Effects in Logit and Probit Models Model Fit for Binary Regression Models Diagnostics Specific to Binary Regression Models Extending the Binary Regression Model - Ordered and Multinomial Models Chapter 12: Conclusions and Recommendations Choosing the Right Estimator Research Design and Measurement Issues Evaluating the Model Effective Presentation of Results
Chapter 1: Some Foundation What is a 'Model'? Statistical Inference Part A: General Principles of Effective Presentation Chapter 2: Best Practices for Graphs and Tables When to use Tables and Graphs Constructing Effective Tables Constructing Clear and Informative Graphs Chapter 3: Methods for Visualizing Distributions Displaying the Distributions of Categorical Variables Displaying Distributions of Quantitative Variables Transformations Chapter 4: Exploring and Describing Relationships Two Categorical Variables Categorical Explanatory Variable and Quantitative Dependent Variable Two quantitative Variables Multivariate Displays Part B: The Linear Model Chapter 5: The Linear Regression Model Ordinary Least Squares Regression Hypothesis tests and confidence intervals Assessing and Comparing Model Fit Relative Importance of Predictors Interpreting and presenting OLS models: Some empirical examples Linear Probability Model Chapter 6: Assessing the Impact and Importance of Multi-category Explanatory Variables Coding Multi-category Explanatory Variables Revisiting Statistical Significance: Multi-category Predictors Relative importance of sets of regressors Graphical Presentation of Additive Effects Chapter 7: Identifying and Handling Problems in Linear Models Nonlinearity Influential Observations Heteroskedasticity Nonnormality Chapter 8: Modelling and Presentation of Curvilinear Effects Curvilinearity in the Linear Model Framework Nonlinear Transformations Polynomial Regression Regression Splines Nonparametric Regression Generalized Additive Models Chapter 9: Interaction Effects in Linear Models Understanding Interaction Effects Interactions Between Two Categorical Variables Interactions Between One Categorical Variable and One Quantitative Variable Interactions Between Two Continuous Variables Interaction Effects: Some Cautions and Recommendations Part C: The Generalized Linear Model and Extensions Chapter 10: Generalized Linear Models Basics of the Generalized Linear Model Maximum Likelihood Estimation Hypothesis tests and confidence intervals Assessing Model Fit Empirical Example: Using Poisson Regression to Predict Counts Understanding Effects of Variables Measuring Variable Importance Model Diagnostics Chapter 11: Categorical Dependent Variables Regression Models for Binary Outcomes Interpreting Effects in Logit and Probit Models Model Fit for Binary Regression Models Diagnostics Specific to Binary Regression Models Extending the Binary Regression Model - Ordered and Multinomial Models Chapter 12: Conclusions and Recommendations Choosing the Right Estimator Research Design and Measurement Issues Evaluating the Model Effective Presentation of Results
Rezensionen
Is your quantitative work so screamingly clear that your readers never misunderstand your figures, misread your tables, or get confused by your prose? If so, then don't waste your time with Andersen and Armstrong's thoughtful book about the effective presentation and interpretation of statistical results. Gary King 20210627
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826