Alan F. Karr
Probability (eBook, PDF)
65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
33 °P sammeln
65,95 €
Als Download kaufen
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
33 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
33 °P sammeln
Alan F. Karr
Probability (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers a straightforward introduction to the mathematical theory of probability. It presents the central results and techniques of the subject in a complete and self-contained account. As a result, the emphasis is on giving results in simple forms with clear proofs and to eschew more powerful forms of theorems which require technically involved proofs. Throughout there are a wide variety of exercises to illustrate and to develop ideas in the text.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 19.99MB
Andere Kunden interessierten sich auch für
- Paul E. PfeifferProbability for Applications (eBook, PDF)40,95 €
- Lothar SachsApplied Statistics (eBook, PDF)40,95 €
- Lothar SachsApplied Statistics (eBook, PDF)62,95 €
- Paul MalliavinIntegration and Probability (eBook, PDF)53,95 €
- Jim PitmanProbability (eBook, PDF)61,95 €
- Yuan Shih ChowProbability Theory (eBook, PDF)53,95 €
- Yuan S. ChowProbability Theory (eBook, PDF)40,95 €
-
-
-
This book offers a straightforward introduction to the mathematical theory of probability. It presents the central results and techniques of the subject in a complete and self-contained account. As a result, the emphasis is on giving results in simple forms with clear proofs and to eschew more powerful forms of theorems which require technically involved proofs. Throughout there are a wide variety of exercises to illustrate and to develop ideas in the text.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 283
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461208914
- Artikelnr.: 43991802
- Verlag: Springer New York
- Seitenzahl: 283
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461208914
- Artikelnr.: 43991802
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prelude: Random Walks.- The Model.- Issues and Approaches.- Functional of the Random Walk.- Limit Theorems.- Summary.- 1 Probability.- 1.1 Random Experiments and Sample Spaces.- 1.2 Events and Classes of Sets.- 1.3 Probabilities and Probability Spaces.- 1.4 Probabilities on R.- 1.5 Conditional Probability Given a Set.- 1.6 Complements.- 1.7 Exercises.- 2 Random Variables.- 2.1 Fundamentals.- 2.2 Combining Random Variables.- 2.3 Distributions and Distribution Functions.- 2.4 Key Random Variables and Distributions.- 2.5 Transformation Theory.- 2.6 Random Variables with Prescribed Distributions.- 2.7 Complements.- 2.8 Exercises.- 3 Independence.- 3.1 Independent Random Variables.- 3.2 Functions of Independent Random Variables.- 3.3 Constructing Independent Random Variables.- 3.4 Independent Events.- 3.5 Occupancy Models.- 3.6 Bernoulli and Poisson Processes.- 3.7 Complements.- 3.8 Exercises.- 4 Expectation.- 4.1 Definition and Fundamental Properties.- 4.2 Integrals with respect to Distribution Functions.- 4.3 Computation of Expectations.- 4.4 LP Spaces and Inequalities.- 4.5 Moments.- 4.6 Complements.- 4.7 Exercises.- 5 Convergence of Sequences of Random Variables.- 5.1 Modes of Convergence.- 5.2 Relationships Among the Modes.- 5.3 Convergence under Transformations.- 5.4 Convergence of Random Vectors.- 5.5 Limit Theorems for Bernoulli Summands.- 5.6 Complements.- 5.7 Exercises.- 6 Characteristic Functions.- 6.1 Definition and Basic Properties.- 6.2 Inversion and Uniqueness Theorems.- 6.3 Moments and Taylor Expansions.- 6.4 Continuity Theorems and Applications.- 6.5 Other Transforms.- 6.6 Complements.- 6.7 Exercises.- 7 Classical Limit Theorems.- 7.1 Series of Independent Random Variables.- 7.2 The Strong Law of Large Numbers.- 7.3 The Central Limit Theorem.- 7.4 The Law ofthe Iterated Logarithm.- 7.5 Applications of the Limit Theorems.- 7.6 Complements.- 7.7 Exercises.- 8 Prediction and Conditional Expectation.- 8.1 Prediction in L2.- 8.2 Conditional Expectation Given a Finite Set of Random Variables.- 8.3 Conditional Expectation for X?L2.- 8.4 Positive and Integrable Random Variables.- 8.5 Conditional Distributions.- 8.6 Computational Techniques.- 8.7 Complements.- 8.8 Exercises.- 9 Martingales.- 9.1 Fundamentals.- 9.2 Stopping Times.- 9.3 Optional Sampling Theorems.- 9.4 Martingale Convergence Theorems.- 9.5 Applications of Convergence Theorems.- 9.6 Complements.- 9.7 Exercises.- A Notation.- B Named Objects.
Prelude: Random Walks.- The Model.- Issues and Approaches.- Functional of the Random Walk.- Limit Theorems.- Summary.- 1 Probability.- 1.1 Random Experiments and Sample Spaces.- 1.2 Events and Classes of Sets.- 1.3 Probabilities and Probability Spaces.- 1.4 Probabilities on R.- 1.5 Conditional Probability Given a Set.- 1.6 Complements.- 1.7 Exercises.- 2 Random Variables.- 2.1 Fundamentals.- 2.2 Combining Random Variables.- 2.3 Distributions and Distribution Functions.- 2.4 Key Random Variables and Distributions.- 2.5 Transformation Theory.- 2.6 Random Variables with Prescribed Distributions.- 2.7 Complements.- 2.8 Exercises.- 3 Independence.- 3.1 Independent Random Variables.- 3.2 Functions of Independent Random Variables.- 3.3 Constructing Independent Random Variables.- 3.4 Independent Events.- 3.5 Occupancy Models.- 3.6 Bernoulli and Poisson Processes.- 3.7 Complements.- 3.8 Exercises.- 4 Expectation.- 4.1 Definition and Fundamental Properties.- 4.2 Integrals with respect to Distribution Functions.- 4.3 Computation of Expectations.- 4.4 LP Spaces and Inequalities.- 4.5 Moments.- 4.6 Complements.- 4.7 Exercises.- 5 Convergence of Sequences of Random Variables.- 5.1 Modes of Convergence.- 5.2 Relationships Among the Modes.- 5.3 Convergence under Transformations.- 5.4 Convergence of Random Vectors.- 5.5 Limit Theorems for Bernoulli Summands.- 5.6 Complements.- 5.7 Exercises.- 6 Characteristic Functions.- 6.1 Definition and Basic Properties.- 6.2 Inversion and Uniqueness Theorems.- 6.3 Moments and Taylor Expansions.- 6.4 Continuity Theorems and Applications.- 6.5 Other Transforms.- 6.6 Complements.- 6.7 Exercises.- 7 Classical Limit Theorems.- 7.1 Series of Independent Random Variables.- 7.2 The Strong Law of Large Numbers.- 7.3 The Central Limit Theorem.- 7.4 The Law ofthe Iterated Logarithm.- 7.5 Applications of the Limit Theorems.- 7.6 Complements.- 7.7 Exercises.- 8 Prediction and Conditional Expectation.- 8.1 Prediction in L2.- 8.2 Conditional Expectation Given a Finite Set of Random Variables.- 8.3 Conditional Expectation for X?L2.- 8.4 Positive and Integrable Random Variables.- 8.5 Conditional Distributions.- 8.6 Computational Techniques.- 8.7 Complements.- 8.8 Exercises.- 9 Martingales.- 9.1 Fundamentals.- 9.2 Stopping Times.- 9.3 Optional Sampling Theorems.- 9.4 Martingale Convergence Theorems.- 9.5 Applications of Convergence Theorems.- 9.6 Complements.- 9.7 Exercises.- A Notation.- B Named Objects.