Rami Shakarchi
Problems and Solutions for Complex Analysis (eBook, PDF)
56,95 €
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
56,95 €
Als Download kaufen
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
28 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
56,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
28 °P sammeln
Rami Shakarchi
Problems and Solutions for Complex Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume contains all the exercises, and their solutions, for Serge Lang's fourth edition of "Complex Analysis." It also serves as an independent source of problems with detailed answers beneficial for anyone interested in learning complex analysis.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 27.63MB
Andere Kunden interessierten sich auch für
Serge LangComplex Analysis (eBook, PDF)60,95 €
Steven G. KrantzHandbook of Complex Variables (eBook, PDF)72,95 €
R. B. BurckelAn Introduction to Classical Complex Analysis (eBook, PDF)40,95 €
Klaus FritzscheFrom Holomorphic Functions to Complex Manifolds (eBook, PDF)72,95 €
John StalkerComplex Analysis (eBook, PDF)40,95 €
Herbert AmannAnalysis II (eBook, PDF)68,95 €
James DudziakVitushkin's Conjecture for Removable Sets (eBook, PDF)40,95 €-
-
-
This volume contains all the exercises, and their solutions, for Serge Lang's fourth edition of "Complex Analysis." It also serves as an independent source of problems with detailed answers beneficial for anyone interested in learning complex analysis.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 246
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461215349
- Artikelnr.: 43993245
- Verlag: Springer US
- Seitenzahl: 246
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461215349
- Artikelnr.: 43993245
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I Complex Numbers and Functions.
I.1 Definition.
I.2 Polar Form.
I.3 Complex Valued Functions.
I.4 Limits and Compact Sets.
I.6 The Cauchy
Riemann Equations.
II Power Series.
II.1 Formal Power Series.
II.2 Convergent Power Series.
II.3 Relations Between Formal and Convergent Series.
II.4 Analytic Functions.
II.5 Differentiation of Power Series.
II.6 The Inverse and Open Mapping Theorems.
III Cauchy's Theorem, First Part.
III.1 Holomorphic Functions on Connected Sets.
III.2 Integrals over Paths.
III.5 The Homotopy Form of Cauchy's Theorem.
III.6 Existence of Global Primitives Definition of the Logarithm.
III.7 The Local Cauchy Formula.
IV Winding Numbers and Cauchy's Theorem.
IV.2 The Global Cauchy Theorem.
V Applications of Cauchy's Integral Formula.
V.1 Uniform Limits of Analytic Functions.
V.2 Laurent Series.
V.3 Isolated Singularities.
VI Calculus of Residues.
VI.1 The Residue Formula.
VI.2 Evaluation of Definite Integrals.
VII Conformal Mappings.
VII.2 Analytic Automorphisms of the Disc.
VII.3 The Upper Half Plane.
VII.4 Other Examples.
VII.5 Fractional Linear Transformations.
VIII Harmonic Functions.
VIII.1 Definition.
VIII.2 Examples.
VIII.3 Basic Properties of Harmonic Functions.
VIII.4 The Poisson Formula.
VIII.5 Construction of Harmonic Functions.
IX Schwarz Reflection.
IX.2 Reflection Across Analytic Arcs.
X The Riemann Mapping Theorema.
X.1 Statement of the Theorem.
X.2 Compact Sets in Function Spaces.
XI Analytic Continuation along Curves.
XI.1 Continuation Along a Curve.
XI.2 The Dilogarithm.
XII Applications of the Maximum Modulus Principle and Jensen's Formula.
XII.1 Jensen's Formula.
XII.2 The Picard
Borel Theorem.
XII.6 The Phragmen
Lindelof and Hadamard Theorems.
XIII Entire and MeromorphicFunctions.
XIII.1 Infinite Products.
XIII.2 Weierstrass Products.
XIII.3 Functions of Finite Order.
XIII.4 Meromorphic Functions, Mittag
Leffler Theorem.
XV The Gamma and Zeta Functions.
XV.1 The Differentiation Lemma.
XV.2 The Gamma Function.
XV.3 The Lerch Formula.
XV.4 Zeta Functions.
XVI The Prime Number Theorem.
XVI.1 Basic Analytic Properties of the Zeta Function.
XVI.2 The Main Lemma and its Application.
I.1 Definition.
I.2 Polar Form.
I.3 Complex Valued Functions.
I.4 Limits and Compact Sets.
I.6 The Cauchy
Riemann Equations.
II Power Series.
II.1 Formal Power Series.
II.2 Convergent Power Series.
II.3 Relations Between Formal and Convergent Series.
II.4 Analytic Functions.
II.5 Differentiation of Power Series.
II.6 The Inverse and Open Mapping Theorems.
III Cauchy's Theorem, First Part.
III.1 Holomorphic Functions on Connected Sets.
III.2 Integrals over Paths.
III.5 The Homotopy Form of Cauchy's Theorem.
III.6 Existence of Global Primitives Definition of the Logarithm.
III.7 The Local Cauchy Formula.
IV Winding Numbers and Cauchy's Theorem.
IV.2 The Global Cauchy Theorem.
V Applications of Cauchy's Integral Formula.
V.1 Uniform Limits of Analytic Functions.
V.2 Laurent Series.
V.3 Isolated Singularities.
VI Calculus of Residues.
VI.1 The Residue Formula.
VI.2 Evaluation of Definite Integrals.
VII Conformal Mappings.
VII.2 Analytic Automorphisms of the Disc.
VII.3 The Upper Half Plane.
VII.4 Other Examples.
VII.5 Fractional Linear Transformations.
VIII Harmonic Functions.
VIII.1 Definition.
VIII.2 Examples.
VIII.3 Basic Properties of Harmonic Functions.
VIII.4 The Poisson Formula.
VIII.5 Construction of Harmonic Functions.
IX Schwarz Reflection.
IX.2 Reflection Across Analytic Arcs.
X The Riemann Mapping Theorema.
X.1 Statement of the Theorem.
X.2 Compact Sets in Function Spaces.
XI Analytic Continuation along Curves.
XI.1 Continuation Along a Curve.
XI.2 The Dilogarithm.
XII Applications of the Maximum Modulus Principle and Jensen's Formula.
XII.1 Jensen's Formula.
XII.2 The Picard
Borel Theorem.
XII.6 The Phragmen
Lindelof and Hadamard Theorems.
XIII Entire and MeromorphicFunctions.
XIII.1 Infinite Products.
XIII.2 Weierstrass Products.
XIII.3 Functions of Finite Order.
XIII.4 Meromorphic Functions, Mittag
Leffler Theorem.
XV The Gamma and Zeta Functions.
XV.1 The Differentiation Lemma.
XV.2 The Gamma Function.
XV.3 The Lerch Formula.
XV.4 Zeta Functions.
XVI The Prime Number Theorem.
XVI.1 Basic Analytic Properties of the Zeta Function.
XVI.2 The Main Lemma and its Application.
I Complex Numbers and Functions.
I.1 Definition.
I.2 Polar Form.
I.3 Complex Valued Functions.
I.4 Limits and Compact Sets.
I.6 The Cauchy
Riemann Equations.
II Power Series.
II.1 Formal Power Series.
II.2 Convergent Power Series.
II.3 Relations Between Formal and Convergent Series.
II.4 Analytic Functions.
II.5 Differentiation of Power Series.
II.6 The Inverse and Open Mapping Theorems.
III Cauchy's Theorem, First Part.
III.1 Holomorphic Functions on Connected Sets.
III.2 Integrals over Paths.
III.5 The Homotopy Form of Cauchy's Theorem.
III.6 Existence of Global Primitives Definition of the Logarithm.
III.7 The Local Cauchy Formula.
IV Winding Numbers and Cauchy's Theorem.
IV.2 The Global Cauchy Theorem.
V Applications of Cauchy's Integral Formula.
V.1 Uniform Limits of Analytic Functions.
V.2 Laurent Series.
V.3 Isolated Singularities.
VI Calculus of Residues.
VI.1 The Residue Formula.
VI.2 Evaluation of Definite Integrals.
VII Conformal Mappings.
VII.2 Analytic Automorphisms of the Disc.
VII.3 The Upper Half Plane.
VII.4 Other Examples.
VII.5 Fractional Linear Transformations.
VIII Harmonic Functions.
VIII.1 Definition.
VIII.2 Examples.
VIII.3 Basic Properties of Harmonic Functions.
VIII.4 The Poisson Formula.
VIII.5 Construction of Harmonic Functions.
IX Schwarz Reflection.
IX.2 Reflection Across Analytic Arcs.
X The Riemann Mapping Theorema.
X.1 Statement of the Theorem.
X.2 Compact Sets in Function Spaces.
XI Analytic Continuation along Curves.
XI.1 Continuation Along a Curve.
XI.2 The Dilogarithm.
XII Applications of the Maximum Modulus Principle and Jensen's Formula.
XII.1 Jensen's Formula.
XII.2 The Picard
Borel Theorem.
XII.6 The Phragmen
Lindelof and Hadamard Theorems.
XIII Entire and MeromorphicFunctions.
XIII.1 Infinite Products.
XIII.2 Weierstrass Products.
XIII.3 Functions of Finite Order.
XIII.4 Meromorphic Functions, Mittag
Leffler Theorem.
XV The Gamma and Zeta Functions.
XV.1 The Differentiation Lemma.
XV.2 The Gamma Function.
XV.3 The Lerch Formula.
XV.4 Zeta Functions.
XVI The Prime Number Theorem.
XVI.1 Basic Analytic Properties of the Zeta Function.
XVI.2 The Main Lemma and its Application.
I.1 Definition.
I.2 Polar Form.
I.3 Complex Valued Functions.
I.4 Limits and Compact Sets.
I.6 The Cauchy
Riemann Equations.
II Power Series.
II.1 Formal Power Series.
II.2 Convergent Power Series.
II.3 Relations Between Formal and Convergent Series.
II.4 Analytic Functions.
II.5 Differentiation of Power Series.
II.6 The Inverse and Open Mapping Theorems.
III Cauchy's Theorem, First Part.
III.1 Holomorphic Functions on Connected Sets.
III.2 Integrals over Paths.
III.5 The Homotopy Form of Cauchy's Theorem.
III.6 Existence of Global Primitives Definition of the Logarithm.
III.7 The Local Cauchy Formula.
IV Winding Numbers and Cauchy's Theorem.
IV.2 The Global Cauchy Theorem.
V Applications of Cauchy's Integral Formula.
V.1 Uniform Limits of Analytic Functions.
V.2 Laurent Series.
V.3 Isolated Singularities.
VI Calculus of Residues.
VI.1 The Residue Formula.
VI.2 Evaluation of Definite Integrals.
VII Conformal Mappings.
VII.2 Analytic Automorphisms of the Disc.
VII.3 The Upper Half Plane.
VII.4 Other Examples.
VII.5 Fractional Linear Transformations.
VIII Harmonic Functions.
VIII.1 Definition.
VIII.2 Examples.
VIII.3 Basic Properties of Harmonic Functions.
VIII.4 The Poisson Formula.
VIII.5 Construction of Harmonic Functions.
IX Schwarz Reflection.
IX.2 Reflection Across Analytic Arcs.
X The Riemann Mapping Theorema.
X.1 Statement of the Theorem.
X.2 Compact Sets in Function Spaces.
XI Analytic Continuation along Curves.
XI.1 Continuation Along a Curve.
XI.2 The Dilogarithm.
XII Applications of the Maximum Modulus Principle and Jensen's Formula.
XII.1 Jensen's Formula.
XII.2 The Picard
Borel Theorem.
XII.6 The Phragmen
Lindelof and Hadamard Theorems.
XIII Entire and MeromorphicFunctions.
XIII.1 Infinite Products.
XIII.2 Weierstrass Products.
XIII.3 Functions of Finite Order.
XIII.4 Meromorphic Functions, Mittag
Leffler Theorem.
XV The Gamma and Zeta Functions.
XV.1 The Differentiation Lemma.
XV.2 The Gamma Function.
XV.3 The Lerch Formula.
XV.4 Zeta Functions.
XVI The Prime Number Theorem.
XVI.1 Basic Analytic Properties of the Zeta Function.
XVI.2 The Main Lemma and its Application.







