Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Pradeepta Mishra is the Director of AI, Fosfor at L&T Infotech (LTI), leading a large group of Data Scientists, computational linguistics experts, Machine Learning and Deep Learning experts in building the next-generation product, 'Leni,' the world's first virtual data scientist. He has expertise across core branches of Artificial Intelligence including Autonomous ML and Deep Learning pipelines, ML Ops, Image Processing, Audio Processing, Natural Language Processing (NLP), Natural Language Generation (NLG), design and implementation of expert systems, and personal digital assistants. In 2019 and 2020, he was named one of "India's Top "40Under40DataScientists" by Analytics India Magazine. Two of his books are translated into Chinese and Spanish based on popular demand.
He delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has mentored more than 2000 data scientists globally. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions, and community-arranged forums. He is a visiting faculty member to more than 10 universities, where he teaches deep learning and machine learning to professionals, and mentors them in pursuing a rewarding career in Artificial Intelligence.
Inhaltsangabe
Chapter 1: Introduction to PyTorch, Tensors, and Tensor Operations.- Chapter 2: Probability Distributions Using PyTorch.- Chapter 3: CNN and RNN Using PyTorch.- Chapter 4: Introduction to Neural Networks Using PyTorch.- Chapter 5: Supervised Learning Using PyTorch.- Chapter 6: Fine-Tuning Deep Learning Models Using PyTorch.- Chapter 7: Natural Language Processing Using PyTorch.- Chapter 8: Distributed PyTorch Modelling, Model Optimization and Deployment.- Chapter 9: Data Augmentation, Feature Engineering and Extractions for Image and Audio.- Chapter 10: PyTorch Model Interpretability and Interface to Sklearn.
Chapter 1: Introduction to PyTorch, Tensors, and Tensor Operations.- Chapter 2: Probability Distributions Using PyTorch.- Chapter 3: CNN and RNN Using PyTorch.- Chapter 4: Introduction to Neural Networks Using PyTorch.- Chapter 5: Supervised Learning Using PyTorch.- Chapter 6: Fine-Tuning Deep Learning Models Using PyTorch.- Chapter 7: Natural Language Processing Using PyTorch.- Chapter 8: Distributed PyTorch Modelling, Model Optimization and Deployment.- Chapter 9: Data Augmentation, Feature Engineering and Extractions for Image and Audio.- Chapter 10: PyTorch Model Interpretability and Interface to Sklearn.
Rezensionen
"The book covers all important facets of neural network implementation and modeling, and could definitely be useful to students and developers keen for an in-depth look at how to build models using PyTorch, or how to engineer particular neural network features using this platform." (Mariana Damova, Computing Reviews, July 24, 2023)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826