Eckart Viehweg
Quasi-projective Moduli for Polarized Manifolds (eBook, PDF)
96,95 €
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
48 °P sammeln
96,95 €
Als Download kaufen
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
48 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
96,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
48 °P sammeln
Eckart Viehweg
Quasi-projective Moduli for Polarized Manifolds (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The subject of the book are construction techniques for classifying spaces of projective manifolds and positivity results for direct image sheaves. Both together allow the proof of the central result, the existence of quasi-projective moduli schemes for a large class of manifolds. The book is of great interest for researchers and graduate students in algebraic geometry or number theory.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 27.2MB
Andere Kunden interessierten sich auch für
Manfred HerrmannEquimultiplicity and Blowing Up (eBook, PDF)40,95 €
Algebraic Curves and Projective Geometry (eBook, PDF)36,95 €
Kichoon YangMeromorphic Functions and Projective Curves (eBook, PDF)72,95 €
Robin HartshorneAmple Subvarieties of Algebraic Varieties (eBook, PDF)44,95 €
Moduli of Curves (eBook, PDF)56,95 €
Paul HackingCompactifying Moduli Spaces (eBook, PDF)20,95 €
Gilberto BiniGeometric Invariant Theory for Polarized Curves (eBook, PDF)28,95 €-
-
-
The subject of the book are construction techniques for classifying spaces of projective manifolds and positivity results for direct image sheaves. Both together allow the proof of the central result, the existence of quasi-projective moduli schemes for a large class of manifolds. The book is of great interest for researchers and graduate students in algebraic geometry or number theory.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 320
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642797453
- Artikelnr.: 53392808
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 320
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642797453
- Artikelnr.: 53392808
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Leitfaden.- Classification Theory and Moduli Problems.- Notations and Conventions.- 1 Moduli Problems and Hilbert Schemes.- 1.1 Moduli Functors and Moduli Schemes.- 1.2 Moduli of Manifolds: The Main Results.- 1.3 Properties of Moduli Functors.- 1.4 Moduli Functors for ?-Gorenstein Schemes.- 1.5 A. Grothendieck's Construction of Hilbert Schemes.- 1.6 Hilbert Schemes of Canonically Polarized Schemes.- 1.7 Hilbert Schemes of Polarized Schemes.- 2 Weakly Positive Sheaves and Vanishing Theorems.- 2.1 Coverings.- 2.2 Numerically Effective Sheaves.- 2.3 Weakly Positive Sheaves.- 2.4 Vanishing Theorems and Base Change.- 2.5 Examples of Weakly Positive Sheaves.- 3 D. Mumford's Geometric Invariant Theory.- 3.1 Group Actions and Quotients.- 3.2 Linearizations.- 3.3 Stable Points.- 3.4 Properties of Stable Points.- 3.5 Quotients, without Stability Criteria.- 4 Stability and Ampleness Criteria.- 4.1 Compactifications and the Hilbert-Mumford Criterion.- 4.2 Weak Positivity of Line Bundles and Stability.- 4.3 Weak Positivity of Vector Bundles and Stability.- 4.4 Ampleness Criteria.- 5 Auxiliary Results on Locally Free Sheaves and Divisors.- 5.1 O. Gabber's Extension Theorem.- 5.2 The Construction of Coverings.- 5.3 Singularities of Divisors.- 5.4 Singularities of Divisors in Flat Families.- 5.5 Vanishing Theorems and Base Change, Revisited.- 6 Weak Positivity of Direct Images of Sheaves.- 6.1 Variation of Hodge Structures.- 6.2 Weakly Semistable Reduction.- 6.3 Applications of the Extension Theorem.- 6.4 Powers of Dualizing Sheaves.- 6.5 Polarizations, Twisted by Powers of Dualizing Sheaves.- 7 Geometric Invariant Theory on Hilbert Schemes.- 7.1 Group Actions on Hilbert Schemes.- 7.2 Geometric Quotients and Moduli Schemes.- 7.3 Methods to Construct Quasi-Projective ModuliSchemes.- 7.4 Conditions for the Existence of Moduli Schemes: Case (CP).- 7.5 Conditions for the Existence of Moduli Schemes: Case (DP).- 7.6 Numerical Equivalence.- 8 Allowing Certain Singularities.- 8.1 Canonical and Log-Terminal Singularities.- 8.2 Singularities of Divisors.- 8.3 Deformations of Canonical and Log-Terminal Singularities.- 8.4 Base Change and Positivity.- 8.5 Moduli of Canonically Polarized Varieties.- 8.6 Moduli of Polarized Varieties.- 8.7 Towards Moduli of Canonically Polarized Schemes.- 9 Moduli as Algebraic Spaces.- 9.1 Algebraic Spaces.- 9.2 Quotients by Equivalence Relations.- 9.3 Quotients in the Category of Algebraic Spaces.- 9.4 Construction of Algebraic Moduli Spaces.- 9.5 Ample Line Bundles on Algebraic Moduli Spaces.- 9.6 Proper Algebraic Moduli Spaces for Curves and Surfaces.- References.- Glossary of Notations.
Leitfaden.- Classification Theory and Moduli Problems.- Notations and Conventions.- 1 Moduli Problems and Hilbert Schemes.- 1.1 Moduli Functors and Moduli Schemes.- 1.2 Moduli of Manifolds: The Main Results.- 1.3 Properties of Moduli Functors.- 1.4 Moduli Functors for ?-Gorenstein Schemes.- 1.5 A. Grothendieck's Construction of Hilbert Schemes.- 1.6 Hilbert Schemes of Canonically Polarized Schemes.- 1.7 Hilbert Schemes of Polarized Schemes.- 2 Weakly Positive Sheaves and Vanishing Theorems.- 2.1 Coverings.- 2.2 Numerically Effective Sheaves.- 2.3 Weakly Positive Sheaves.- 2.4 Vanishing Theorems and Base Change.- 2.5 Examples of Weakly Positive Sheaves.- 3 D. Mumford's Geometric Invariant Theory.- 3.1 Group Actions and Quotients.- 3.2 Linearizations.- 3.3 Stable Points.- 3.4 Properties of Stable Points.- 3.5 Quotients, without Stability Criteria.- 4 Stability and Ampleness Criteria.- 4.1 Compactifications and the Hilbert-Mumford Criterion.- 4.2 Weak Positivity of Line Bundles and Stability.- 4.3 Weak Positivity of Vector Bundles and Stability.- 4.4 Ampleness Criteria.- 5 Auxiliary Results on Locally Free Sheaves and Divisors.- 5.1 O. Gabber's Extension Theorem.- 5.2 The Construction of Coverings.- 5.3 Singularities of Divisors.- 5.4 Singularities of Divisors in Flat Families.- 5.5 Vanishing Theorems and Base Change, Revisited.- 6 Weak Positivity of Direct Images of Sheaves.- 6.1 Variation of Hodge Structures.- 6.2 Weakly Semistable Reduction.- 6.3 Applications of the Extension Theorem.- 6.4 Powers of Dualizing Sheaves.- 6.5 Polarizations, Twisted by Powers of Dualizing Sheaves.- 7 Geometric Invariant Theory on Hilbert Schemes.- 7.1 Group Actions on Hilbert Schemes.- 7.2 Geometric Quotients and Moduli Schemes.- 7.3 Methods to Construct Quasi-Projective ModuliSchemes.- 7.4 Conditions for the Existence of Moduli Schemes: Case (CP).- 7.5 Conditions for the Existence of Moduli Schemes: Case (DP).- 7.6 Numerical Equivalence.- 8 Allowing Certain Singularities.- 8.1 Canonical and Log-Terminal Singularities.- 8.2 Singularities of Divisors.- 8.3 Deformations of Canonical and Log-Terminal Singularities.- 8.4 Base Change and Positivity.- 8.5 Moduli of Canonically Polarized Varieties.- 8.6 Moduli of Polarized Varieties.- 8.7 Towards Moduli of Canonically Polarized Schemes.- 9 Moduli as Algebraic Spaces.- 9.1 Algebraic Spaces.- 9.2 Quotients by Equivalence Relations.- 9.3 Quotients in the Category of Algebraic Spaces.- 9.4 Construction of Algebraic Moduli Spaces.- 9.5 Ample Line Bundles on Algebraic Moduli Spaces.- 9.6 Proper Algebraic Moduli Spaces for Curves and Surfaces.- References.- Glossary of Notations.







