At the frontier of complex analysis with real analysis, quasiconformal mappings appeared in 1859-60 in the cartography work of A. Tissot, well before the term "quasiconformal" was coined by L. Ahlfors in 1935. The detailed study of these mappings began in 1928 by H. Grötzsch, and L. Ahlfors' seminal work published in 1935 significantly contributed to their development and was considered for awarding him the Fields Medal in 1936. The theory further evolved in 1937 and 1939 with O. Teichmüller's contributions, and subsequent advancements are partially covered in this book.
Organized into ten chapters with eight appendices, this work aims to provide an accessible, self-contained approach to the subject and includes examples at various levels and extensive applications to holomorphic dynamics. Throughout the text, historical notes contextualize advancements over time.
A sequel to the author's previous book, 'Complex Analysis and Dynamics in One Variable with Applications,' also published by Springer, this volume might be suitable for students in mathematics, physics, or engineering. A solid background in basic mathematical analysis is recommended to fully benefit from its content.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.