Remote Sensing of Land Cover and Land Use Changes in South and Southeast Asia, Volume 1 (eBook, PDF)
Mapping and Monitoring
Redaktion: Vadrevu, Krishna Prasad; Gutman, Garik; Justice, Christopher
168,95 €
168,95 €
inkl. MwSt.
Erscheint vor. 22.07.25
84 °P sammeln
168,95 €
Als Download kaufen
168,95 €
inkl. MwSt.
Erscheint vor. 22.07.25
84 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
168,95 €
inkl. MwSt.
Erscheint vor. 22.07.25
Alle Infos zum eBook verschenken
84 °P sammeln
Unser Service für Vorbesteller - Ihr Vorteil ohne Risiko:
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Remote Sensing of Land Cover and Land Use Changes in South and Southeast Asia, Volume 1 (eBook, PDF)
Mapping and Monitoring
Redaktion: Vadrevu, Krishna Prasad; Gutman, Garik; Justice, Christopher
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Volume 1 of Remote Sensing of LCLUC in South and Southeast Asi a handbook showcases the practical utility of remote sensing data for effective LCLUC mapping and monitoring. It provides case studies on urban expansion, deforestation, and agricultural intensification and features contributions from NASA and regional experts.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 93.22MB
Andere Kunden interessierten sich auch für
- Remote Sensing of Land Cover and Land Use Changes in South and Southeast Asia, Volume 2 (eBook, PDF)168,95 €
- Remote Sensing of Land Cover and Land Use Changes in South and Southeast Asia, Volume 2 (eBook, ePUB)168,95 €
- Remote Sensing of Land Cover and Land Use Changes in South and Southeast Asia, Volume 1 (eBook, ePUB)168,95 €
- Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries (eBook, PDF)169,95 €
- Biomass Burning in South and Southeast Asia, Two Volume Set (eBook, PDF)91,95 €
- Biomass Burning in South and Southeast Asia (eBook, PDF)54,95 €
- Biao LiuSpatio-temporal Analysis and Optimization of Land Use/Cover Change (eBook, PDF)68,95 €
-
-
-
Volume 1 of Remote Sensing of LCLUC in South and Southeast Asia handbook showcases the practical utility of remote sensing data for effective LCLUC mapping and monitoring. It provides case studies on urban expansion, deforestation, and agricultural intensification and features contributions from NASA and regional experts.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 386
- Erscheinungstermin: 22. Juli 2025
- Englisch
- ISBN-13: 9781040387948
- Artikelnr.: 74304024
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 386
- Erscheinungstermin: 22. Juli 2025
- Englisch
- ISBN-13: 9781040387948
- Artikelnr.: 74304024
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Krishna Prasad Vadrevu is a remote sensing scientist at NASA's Marshall Space Flight Center in Huntsville, Alabama, USA. His research focuses on land cover and land use change (LCLUC), fire dynamics, and biomass burning emissions. With 25 years of experience in satellite remote sensing, he has an extensive publication record. He is the Deputy Program Manager for NASA's LCLUC Program and leads the South/Southeast Asia Research Initiative. Dr. Christopher Justice is a Distinguished University Professor in the Department of Geographical Sciences at the University of Maryland, College Park, USA, with 45 years of experience in remote sensing research. He is a Project Scientist for the NASA LCLUC Program, the Land Discipline Lead for NASA MODIS, and a Suomi-NPP VIIRS Science Team member. Additionally, he is the Co-Chair of the GEO Global Agricultural Monitoring Initiative (GEOGLAM), Chief Scientist for NASA HARVEST, and Chair of the international Global Observations of Forest and Land Use Dynamics (GOFC-GOLD) program. Dr. Garik Gutman is Program Manager for the NASA Land-Cover/Land-Use Change (LCLUC) Program. After 14 years of research on deriving land surface variables from satellite data at the National Oceanic and Atmospheric Administration (NOAA), he joined NASA Headquarters in 1999 and has been leading the LCLUC program, as well as Landsat-related activities, at NASA for over 25 years. He is the author of over 90 publications in peer-reviewed scientific journals and of several chapters in various climate- and land-cover related scientific volumes.
1. Land Cover/Land Use Changes in South and Southeast Asia: An Overview. 2.
Monitoring the Extent of Trees Outside of Forests in South Asia:
Nature-based Solutions for Climate Change Mitigation. 3. Land Use and Land
Cover Change (LULCC) Detection in Bangalore, India Using Multi-Temporal
Synthetic Aperture Radar and Spatial Attention Enhanced Siamese Network. 4.
Super-Resolution Enhancement of Landsat Satellite Data Using Generative
Adversarial Networks (GANs) and U-Net Deep Learning Algorithms. 5.
Agriculture Crop Monitoring for Yield Estimation with Zero Shot Fruit
Detection: A Deep Learning Approach. 6. Mapping Forest Types in Myanmar
Helps Set Conservation Priorities in a Key Indo-Burma Biodiversity Hotspot.
7. Vegetation Disturbance and Fragmentation in Uttarakhand, India: A Case
Study Using MODIS and Very High-Resolution Satellite Datasets. 8. Machine
Learning of NDVI Time Series Identifies Ghost Villages in Uttarakhand,
India. 9. Evaluation of Deep Learning Algorithms for Mapping Burnt Areas in
an Agricultural Landscape. 10. Deep Learning Models for Fire Prediction: A
Comparative Study. 11. Land Cover Change in Cambodia, Laos, Myanmar,
Thailand, And Vietnam and the Effects of Varied Spatial Scales and Land
Cover Classes. 12. Characterizing Aquaculture-Associated Land Cover Land
Use Changes in Central Thailand, 1990-2020. 13. Crop Type Mapping in
Smallholder Agricultural Settings Using Sentinel-1 SAR Imagery and Deep
Learning. 14. Land Use/Land Cover Changes in the Mekong Delta, Vietnam
Using Landsat Remote Sensing Data. 15. Satellite Observations of Land Cover
and Land Use in the B¿c Liêu Province, Vietnam. 16. Spatio-Temporal Pattern
Mapping of Ganoderma Disease in Oil Palm Plantations with PALSAR-2
Time-Series. 17. Monitoring Urban Sprawl Using Synthetic Aperture Radar
(SAR) Data: A Case Study of the Denpasar Greater Area, Bali, Indonesia.
Monitoring the Extent of Trees Outside of Forests in South Asia:
Nature-based Solutions for Climate Change Mitigation. 3. Land Use and Land
Cover Change (LULCC) Detection in Bangalore, India Using Multi-Temporal
Synthetic Aperture Radar and Spatial Attention Enhanced Siamese Network. 4.
Super-Resolution Enhancement of Landsat Satellite Data Using Generative
Adversarial Networks (GANs) and U-Net Deep Learning Algorithms. 5.
Agriculture Crop Monitoring for Yield Estimation with Zero Shot Fruit
Detection: A Deep Learning Approach. 6. Mapping Forest Types in Myanmar
Helps Set Conservation Priorities in a Key Indo-Burma Biodiversity Hotspot.
7. Vegetation Disturbance and Fragmentation in Uttarakhand, India: A Case
Study Using MODIS and Very High-Resolution Satellite Datasets. 8. Machine
Learning of NDVI Time Series Identifies Ghost Villages in Uttarakhand,
India. 9. Evaluation of Deep Learning Algorithms for Mapping Burnt Areas in
an Agricultural Landscape. 10. Deep Learning Models for Fire Prediction: A
Comparative Study. 11. Land Cover Change in Cambodia, Laos, Myanmar,
Thailand, And Vietnam and the Effects of Varied Spatial Scales and Land
Cover Classes. 12. Characterizing Aquaculture-Associated Land Cover Land
Use Changes in Central Thailand, 1990-2020. 13. Crop Type Mapping in
Smallholder Agricultural Settings Using Sentinel-1 SAR Imagery and Deep
Learning. 14. Land Use/Land Cover Changes in the Mekong Delta, Vietnam
Using Landsat Remote Sensing Data. 15. Satellite Observations of Land Cover
and Land Use in the B¿c Liêu Province, Vietnam. 16. Spatio-Temporal Pattern
Mapping of Ganoderma Disease in Oil Palm Plantations with PALSAR-2
Time-Series. 17. Monitoring Urban Sprawl Using Synthetic Aperture Radar
(SAR) Data: A Case Study of the Denpasar Greater Area, Bali, Indonesia.
1. Land Cover/Land Use Changes in South and Southeast Asia: An Overview. 2.
Monitoring the Extent of Trees Outside of Forests in South Asia:
Nature-based Solutions for Climate Change Mitigation. 3. Land Use and Land
Cover Change (LULCC) Detection in Bangalore, India Using Multi-Temporal
Synthetic Aperture Radar and Spatial Attention Enhanced Siamese Network. 4.
Super-Resolution Enhancement of Landsat Satellite Data Using Generative
Adversarial Networks (GANs) and U-Net Deep Learning Algorithms. 5.
Agriculture Crop Monitoring for Yield Estimation with Zero Shot Fruit
Detection: A Deep Learning Approach. 6. Mapping Forest Types in Myanmar
Helps Set Conservation Priorities in a Key Indo-Burma Biodiversity Hotspot.
7. Vegetation Disturbance and Fragmentation in Uttarakhand, India: A Case
Study Using MODIS and Very High-Resolution Satellite Datasets. 8. Machine
Learning of NDVI Time Series Identifies Ghost Villages in Uttarakhand,
India. 9. Evaluation of Deep Learning Algorithms for Mapping Burnt Areas in
an Agricultural Landscape. 10. Deep Learning Models for Fire Prediction: A
Comparative Study. 11. Land Cover Change in Cambodia, Laos, Myanmar,
Thailand, And Vietnam and the Effects of Varied Spatial Scales and Land
Cover Classes. 12. Characterizing Aquaculture-Associated Land Cover Land
Use Changes in Central Thailand, 1990-2020. 13. Crop Type Mapping in
Smallholder Agricultural Settings Using Sentinel-1 SAR Imagery and Deep
Learning. 14. Land Use/Land Cover Changes in the Mekong Delta, Vietnam
Using Landsat Remote Sensing Data. 15. Satellite Observations of Land Cover
and Land Use in the B¿c Liêu Province, Vietnam. 16. Spatio-Temporal Pattern
Mapping of Ganoderma Disease in Oil Palm Plantations with PALSAR-2
Time-Series. 17. Monitoring Urban Sprawl Using Synthetic Aperture Radar
(SAR) Data: A Case Study of the Denpasar Greater Area, Bali, Indonesia.
Monitoring the Extent of Trees Outside of Forests in South Asia:
Nature-based Solutions for Climate Change Mitigation. 3. Land Use and Land
Cover Change (LULCC) Detection in Bangalore, India Using Multi-Temporal
Synthetic Aperture Radar and Spatial Attention Enhanced Siamese Network. 4.
Super-Resolution Enhancement of Landsat Satellite Data Using Generative
Adversarial Networks (GANs) and U-Net Deep Learning Algorithms. 5.
Agriculture Crop Monitoring for Yield Estimation with Zero Shot Fruit
Detection: A Deep Learning Approach. 6. Mapping Forest Types in Myanmar
Helps Set Conservation Priorities in a Key Indo-Burma Biodiversity Hotspot.
7. Vegetation Disturbance and Fragmentation in Uttarakhand, India: A Case
Study Using MODIS and Very High-Resolution Satellite Datasets. 8. Machine
Learning of NDVI Time Series Identifies Ghost Villages in Uttarakhand,
India. 9. Evaluation of Deep Learning Algorithms for Mapping Burnt Areas in
an Agricultural Landscape. 10. Deep Learning Models for Fire Prediction: A
Comparative Study. 11. Land Cover Change in Cambodia, Laos, Myanmar,
Thailand, And Vietnam and the Effects of Varied Spatial Scales and Land
Cover Classes. 12. Characterizing Aquaculture-Associated Land Cover Land
Use Changes in Central Thailand, 1990-2020. 13. Crop Type Mapping in
Smallholder Agricultural Settings Using Sentinel-1 SAR Imagery and Deep
Learning. 14. Land Use/Land Cover Changes in the Mekong Delta, Vietnam
Using Landsat Remote Sensing Data. 15. Satellite Observations of Land Cover
and Land Use in the B¿c Liêu Province, Vietnam. 16. Spatio-Temporal Pattern
Mapping of Ganoderma Disease in Oil Palm Plantations with PALSAR-2
Time-Series. 17. Monitoring Urban Sprawl Using Synthetic Aperture Radar
(SAR) Data: A Case Study of the Denpasar Greater Area, Bali, Indonesia.