Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the first MICCAI Workshop on Resource-Efficient Medical Image Analysis, REMIA 2022, held in conjunction with MICCAI 2022, in September 2022 as a hybrid event. REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations.
This book constitutes the refereed proceedings of the first MICCAI Workshop on Resource-Efficient Medical Image Analysis, REMIA 2022, held in conjunction with MICCAI 2022, in September 2022 as a hybrid event.
REMIA 2022 accepted 13 papers from the 19 submissions received. The workshop aims at creating a discussion on the issues for practical applications of medical imaging systems with data, label and hardware limitations.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Multi-Task Semi-Supervised Learning for Vascular Network.- Segmentation and Renal Cell Carcinoma Classification.- Self-supervised Antigen Detection Artificial Intelligence (SANDI).- RadTex: Learning Effcient Radiograph Representations from Text Reports.- Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification.- Triple-View Feature Learning for Medical Image Segmentation.- Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Effciency.- An Effcient Defending Mechanism Against Image Attacking On Medical Image Segmentation Models.- Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Analysis via a Simple and Low-cost Joint Representation Tuning.- Pathological Image Contrastive Self-Supervised Learning.- Investigation of Training Multiple Instance Learning Networks with Instance Sampling.- Masked Video Modeling with Correlation-aware Contrastive Learning for Breast Cancer Diagnosis in Ultrasound.- A self-attentive meta-learning approach for image-based few-shot disease detection.- Facing Annotation Redundancy: OCT Layer Segmentation with Only 10 Annotated Pixels Per Layer.
Multi-Task Semi-Supervised Learning for Vascular Network.- Segmentation and Renal Cell Carcinoma Classification.- Self-supervised Antigen Detection Artificial Intelligence (SANDI).- RadTex: Learning Effcient Radiograph Representations from Text Reports.- Single Domain Generalization via Spontaneous Amplitude Spectrum Diversification.- Triple-View Feature Learning for Medical Image Segmentation.- Classification of 4D fMRI Images Using ML, Focusing on Computational and Memory Utilization Effciency.- An Effcient Defending Mechanism Against Image Attacking On Medical Image Segmentation Models.- Leverage Supervised and Self-supervised Pretrain Models for Pathological Survival Analysis via a Simple and Low-cost Joint Representation Tuning.- Pathological Image Contrastive Self-Supervised Learning.- Investigation of Training Multiple Instance Learning Networks with Instance Sampling.- Masked Video Modeling with Correlation-aware Contrastive Learning for Breast Cancer Diagnosis in Ultrasound.- A self-attentive meta-learning approach for image-based few-shot disease detection.- Facing Annotation Redundancy: OCT Layer Segmentation with Only 10 Annotated Pixels Per Layer.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826