Similarity Search and Applications (eBook, PDF)
16th International Conference, SISAP 2023, A Coruña, Spain, October 9-11, 2023, Proceedings
Redaktion: Pedreira, Oscar; Estivill-Castro, Vladimir
46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
46,95 €
Als Download kaufen
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Similarity Search and Applications (eBook, PDF)
16th International Conference, SISAP 2023, A Coruña, Spain, October 9-11, 2023, Proceedings
Redaktion: Pedreira, Oscar; Estivill-Castro, Vladimir
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 16th International Conference on Similarity Search and Applications, SISAP 2023, held in A Coruña, Spain, during October 9-11, 2023. The 16 full papers and 4 short papers included in this book were carefully reviewed and selected from 33 submissions. They were organized in topical sections as follows: similarity queries, similarity measures, indexing and retrieval, data management, feature extraction, intrinsic dimensionality, efficient algorithms, similarity in machine learning and data mining.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 33.94MB
Andere Kunden interessierten sich auch für
- Similarity Search and Applications (eBook, PDF)61,95 €
- Similarity Search and Applications (eBook, PDF)69,95 €
- Similarity Search and Applications (eBook, PDF)53,95 €
- Similarity Search and Applications (eBook, PDF)40,95 €
- Similarity Search and Applications (eBook, PDF)47,95 €
- Similarity Search and Applications (eBook, PDF)53,95 €
- Database and Expert Systems Applications (eBook, PDF)40,95 €
-
- -30%11
-
This book constitutes the refereed proceedings of the 16th International Conference on Similarity Search and Applications, SISAP 2023, held in A Coruña, Spain, during October 9-11, 2023.
The 16 full papers and 4 short papers included in this book were carefully reviewed and selected from 33 submissions. They were organized in topical sections as follows: similarity queries, similarity measures, indexing and retrieval, data management, feature extraction, intrinsic dimensionality, efficient algorithms, similarity in machine learning and data mining.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 310
- Erscheinungstermin: 26. Oktober 2023
- Englisch
- ISBN-13: 9783031469947
- Artikelnr.: 69545940
- Verlag: Springer International Publishing
- Seitenzahl: 310
- Erscheinungstermin: 26. Oktober 2023
- Englisch
- ISBN-13: 9783031469947
- Artikelnr.: 69545940
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Keynotes.- From Intrinsic Dimensionality to Chaos and Control: Towards a Unified Theoretical View.- The Rise of HNSW: Understanding Key Factors Driving the Adoption.- Towards a Universal Similarity Function: the Information Contrast Model and its Application as Evaluation Metric in Artificial Intelligence Tasks.- Research Track.- Finding HSP Neighbors via an Exact, Hierarchical Approach.- Approximate Similarity Search for Time Series Data Enhanced by Section Min-Hash.- Mutual nearest neighbor graph for data analysis: Application to metric space clustering.- An Alternating Optimization Scheme for Binary Sketches for Cosine Similarity Search.- Unbiased Similarity Estimators using Samples.- Retrieve-and-Rank End-to-End Summarization of Biomedical Studies.- Fine-grained Categorization of Mobile Applications through Semantic Similarity Techniques for Apps Classification.- Runs of Side-SharingTandems in Rectangular Arrays.- Turbo Scan: Fast Sequential Nearest Neighbor Search in High Dimensions.- Class Representatives Selection in Non-Metric Spaces for Nearest Prototype Classification.- The Dataset-similarity-based Approach to Select Datasets for Evaluation in Similarity Retrieval.- Suitability of Nearest Neighbour Indexes for Multimedia Relevance Feedback.- Accelerating k-Means Clustering with Cover Trees.- Is Quantized ANN Search Cursed? Case Study of Quantifying Search and Index Quality.- Minwise-Independent Permutations with Insertion and Deletion of Features.- SDOclust: Clustering with Sparse Data Observers.- Solving k-Closest Pairs in High-Dimensional Data using Locality- Sensitive Hashing.- Vec2Doc: Transforming Dense Vectors into Sparse Representations for Efficient Information Retrieval.- Similarity Search with Multiple-Object Queries.- Diversity Similarity Join for Big Data.- Indexing Challenge.- Overview of the SISAP 2023 Indexing Challenge.- Enhancing Approximate Nearest Neighbor Search: Binary-Indexed LSH-Tries, Trie Rebuilding, And Batch Extraction.- General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing Challenge Report by Team UTokyo.- SISAP 2023 Indexing Challenge - Learned Metric Index.- Computational Enhancements of HNSW Targeted to Very Large Datasets.- CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors.
Keynotes.- From Intrinsic Dimensionality to Chaos and Control: Towards a Unified Theoretical View.- The Rise of HNSW: Understanding Key Factors Driving the Adoption.- Towards a Universal Similarity Function: the Information Contrast Model and its Application as Evaluation Metric in Artificial Intelligence Tasks.- Research Track.- Finding HSP Neighbors via an Exact, Hierarchical Approach.- Approximate Similarity Search for Time Series Data Enhanced by Section Min-Hash.- Mutual nearest neighbor graph for data analysis: Application to metric space clustering.- An Alternating Optimization Scheme for Binary Sketches for Cosine Similarity Search.- Unbiased Similarity Estimators using Samples.- Retrieve-and-Rank End-to-End Summarization of Biomedical Studies.- Fine-grained Categorization of Mobile Applications through Semantic Similarity Techniques for Apps Classification.- Runs of Side-SharingTandems in Rectangular Arrays.- Turbo Scan: Fast Sequential Nearest Neighbor Search in High Dimensions.- Class Representatives Selection in Non-Metric Spaces for Nearest Prototype Classification.- The Dataset-similarity-based Approach to Select Datasets for Evaluation in Similarity Retrieval.- Suitability of Nearest Neighbour Indexes for Multimedia Relevance Feedback.- Accelerating k-Means Clustering with Cover Trees.- Is Quantized ANN Search Cursed? Case Study of Quantifying Search and Index Quality.- Minwise-Independent Permutations with Insertion and Deletion of Features.- SDOclust: Clustering with Sparse Data Observers.- Solving k-Closest Pairs in High-Dimensional Data using Locality- Sensitive Hashing.- Vec2Doc: Transforming Dense Vectors into Sparse Representations for Efficient Information Retrieval.- Similarity Search with Multiple-Object Queries.- Diversity Similarity Join for Big Data.- Indexing Challenge.- Overview of the SISAP 2023 Indexing Challenge.- Enhancing Approximate Nearest Neighbor Search: Binary-Indexed LSH-Tries, Trie Rebuilding, And Batch Extraction.- General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing Challenge Report by Team UTokyo.- SISAP 2023 Indexing Challenge - Learned Metric Index.- Computational Enhancements of HNSW Targeted to Very Large Datasets.- CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors.