In the fields of dynamical systems and control theory, a fractional-order system is a dynamical system that can be modeled by a fractional differential equation containing derivatives of non-integer order. In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. Sliding Mode Control of Fractional-order Systems discusses the design of several types of fractional-order systems. Sliding mode control strategy allows the exploration of the problems of projection synchronization control, finite-time stability, asymptotic stability, and formation control of fractional-order systems, which make up the shortages in the analysis and design of fractional-order systems. The book focuses on several types of fractional-order control systems, combined with the sliding-mode control (SMC) and event-triggered control, the problems of projection synchronization control, finite-time stability, asymptotic stability, and formation control for those systems are explored, which makes up the shortages in the analysis and design of fractional-order systems. - Provides a comprehensive and clear explanation of recent developments in sliding mode control of fractional-order systems - Unifies existing and emerging concepts concerning sliding mode control of fractional-order systems - Provides a series of the latest results in, including but not limited to, projective synchronization control, exponential consensus control, formation control and fractional-order event-triggered control
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.