Chuanming Zong
Strange Phenomena in Convex and Discrete Geometry (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Chuanming Zong
Strange Phenomena in Convex and Discrete Geometry (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents some of the most famous problems of convex and discrete geometry as well as their (at times astonishing) answers. Though covering some of the most recent developments, the book is self-contained, and can be understood by every mathematician.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.24MB
Andere Kunden interessierten sich auch für
- Peter M. GruberConvex and Discrete Geometry (eBook, PDF)137,95 €
- Károly BezdekClassical Topics in Discrete Geometry (eBook, PDF)35,95 €
- Jiri MatousekLectures on Discrete Geometry (eBook, PDF)65,95 €
- Peter BrassResearch Problems in Discrete Geometry (eBook, PDF)40,95 €
- Eike HertelAltes und Neues aus der Geometrie (eBook, PDF)19,99 €
- Hallard T. CroftUnsolved Problems in Geometry (eBook, PDF)97,95 €
- Michael HuberFlag-transitive Steiner Designs (eBook, PDF)19,95 €
-
-
-
This book presents some of the most famous problems of convex and discrete geometry as well as their (at times astonishing) answers. Though covering some of the most recent developments, the book is self-contained, and can be understood by every mathematician.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 158
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461384816
- Artikelnr.: 43987485
- Verlag: Springer US
- Seitenzahl: 158
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461384816
- Artikelnr.: 43987485
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Borsuk's Problem.-
1 Introduction.-
2 The Perkal-Eggleston Theorem.-
3 Some Remarks.-
4 Larman's Problem.-
5 The Kahn-Kalai Phenomenon.- 2 Finite Packing Problems.-
1 Introduction.-
2 Supporting Functions, Area Functions, Minkowski Sums, Mixed Volumes, and Quermassintegrals.-
3 The Optimal Finite Packings Regarding Quermassintegrals.-
4 The L. Fejes Tóth-Betke-Henk-Wills Phenomenon.-
5 Some Historical Remarks.- 3 The Venkov-McMullen Theorem and Stein's Phenomenon.-
1 Introduction.-
2 Convex Bodies and Their Area Functions.-
3 The Venkov-McMullen Theorem.-
4 Stein's Phenomenon.-
5 Some Remarks.- 4 Local Packing Phenomena.-
1 Introduction.-
2 A Phenomenon Concerning Blocking Numbers and Kissing Numbers.-
3 A Basic Approximation Result.-
4 Minkowski's Criteria for Packing Lattices and the Densest Packing Lattices.-
5 A Phenomenon Concerning Kissing Numbers and Packing Densities.-
6 Remarks and Open Problems.- 5 Category Phenomena.-
1 Introduction.-
2 Gruber's Phenomenon.-
3 The Aleksandrov-Busemann-Feller Theorem.-
4 A Theorem of Zamfirescu.-
5 The Schneider-Zamfirescu Phenomenon.-
6 Some Remarks.- 6 The Busemann-Petty Problem.-
1 Introduction.-
2 Steiner Symmetrization.-
3 A Theorem of Busemann.-
4 The Larman-Rogers Phenomenon.-
5 Schneider's Phenomenon.-
6 Some Historical Remarks.- 7 Dvoretzky's Theorem.-
1 Introduction.-
2 Preliminaries.-
3 Technical Introduction.-
4 A Lemma of Dvoretzky and Rogers.-
5 An Estimate for ?V(AV).-
6 ?-nets and ?-spheres.-
7 A Proof of Dvoretzky's Theorem.-
8 An Upper Bound for M (n, ?).-
9 Some Historical Remarks.- Inedx.
1 Introduction.-
2 The Perkal-Eggleston Theorem.-
3 Some Remarks.-
4 Larman's Problem.-
5 The Kahn-Kalai Phenomenon.- 2 Finite Packing Problems.-
1 Introduction.-
2 Supporting Functions, Area Functions, Minkowski Sums, Mixed Volumes, and Quermassintegrals.-
3 The Optimal Finite Packings Regarding Quermassintegrals.-
4 The L. Fejes Tóth-Betke-Henk-Wills Phenomenon.-
5 Some Historical Remarks.- 3 The Venkov-McMullen Theorem and Stein's Phenomenon.-
1 Introduction.-
2 Convex Bodies and Their Area Functions.-
3 The Venkov-McMullen Theorem.-
4 Stein's Phenomenon.-
5 Some Remarks.- 4 Local Packing Phenomena.-
1 Introduction.-
2 A Phenomenon Concerning Blocking Numbers and Kissing Numbers.-
3 A Basic Approximation Result.-
4 Minkowski's Criteria for Packing Lattices and the Densest Packing Lattices.-
5 A Phenomenon Concerning Kissing Numbers and Packing Densities.-
6 Remarks and Open Problems.- 5 Category Phenomena.-
1 Introduction.-
2 Gruber's Phenomenon.-
3 The Aleksandrov-Busemann-Feller Theorem.-
4 A Theorem of Zamfirescu.-
5 The Schneider-Zamfirescu Phenomenon.-
6 Some Remarks.- 6 The Busemann-Petty Problem.-
1 Introduction.-
2 Steiner Symmetrization.-
3 A Theorem of Busemann.-
4 The Larman-Rogers Phenomenon.-
5 Schneider's Phenomenon.-
6 Some Historical Remarks.- 7 Dvoretzky's Theorem.-
1 Introduction.-
2 Preliminaries.-
3 Technical Introduction.-
4 A Lemma of Dvoretzky and Rogers.-
5 An Estimate for ?V(AV).-
6 ?-nets and ?-spheres.-
7 A Proof of Dvoretzky's Theorem.-
8 An Upper Bound for M (n, ?).-
9 Some Historical Remarks.- Inedx.
1 Borsuk's Problem.-
1 Introduction.-
2 The Perkal-Eggleston Theorem.-
3 Some Remarks.-
4 Larman's Problem.-
5 The Kahn-Kalai Phenomenon.- 2 Finite Packing Problems.-
1 Introduction.-
2 Supporting Functions, Area Functions, Minkowski Sums, Mixed Volumes, and Quermassintegrals.-
3 The Optimal Finite Packings Regarding Quermassintegrals.-
4 The L. Fejes Tóth-Betke-Henk-Wills Phenomenon.-
5 Some Historical Remarks.- 3 The Venkov-McMullen Theorem and Stein's Phenomenon.-
1 Introduction.-
2 Convex Bodies and Their Area Functions.-
3 The Venkov-McMullen Theorem.-
4 Stein's Phenomenon.-
5 Some Remarks.- 4 Local Packing Phenomena.-
1 Introduction.-
2 A Phenomenon Concerning Blocking Numbers and Kissing Numbers.-
3 A Basic Approximation Result.-
4 Minkowski's Criteria for Packing Lattices and the Densest Packing Lattices.-
5 A Phenomenon Concerning Kissing Numbers and Packing Densities.-
6 Remarks and Open Problems.- 5 Category Phenomena.-
1 Introduction.-
2 Gruber's Phenomenon.-
3 The Aleksandrov-Busemann-Feller Theorem.-
4 A Theorem of Zamfirescu.-
5 The Schneider-Zamfirescu Phenomenon.-
6 Some Remarks.- 6 The Busemann-Petty Problem.-
1 Introduction.-
2 Steiner Symmetrization.-
3 A Theorem of Busemann.-
4 The Larman-Rogers Phenomenon.-
5 Schneider's Phenomenon.-
6 Some Historical Remarks.- 7 Dvoretzky's Theorem.-
1 Introduction.-
2 Preliminaries.-
3 Technical Introduction.-
4 A Lemma of Dvoretzky and Rogers.-
5 An Estimate for ?V(AV).-
6 ?-nets and ?-spheres.-
7 A Proof of Dvoretzky's Theorem.-
8 An Upper Bound for M (n, ?).-
9 Some Historical Remarks.- Inedx.
1 Introduction.-
2 The Perkal-Eggleston Theorem.-
3 Some Remarks.-
4 Larman's Problem.-
5 The Kahn-Kalai Phenomenon.- 2 Finite Packing Problems.-
1 Introduction.-
2 Supporting Functions, Area Functions, Minkowski Sums, Mixed Volumes, and Quermassintegrals.-
3 The Optimal Finite Packings Regarding Quermassintegrals.-
4 The L. Fejes Tóth-Betke-Henk-Wills Phenomenon.-
5 Some Historical Remarks.- 3 The Venkov-McMullen Theorem and Stein's Phenomenon.-
1 Introduction.-
2 Convex Bodies and Their Area Functions.-
3 The Venkov-McMullen Theorem.-
4 Stein's Phenomenon.-
5 Some Remarks.- 4 Local Packing Phenomena.-
1 Introduction.-
2 A Phenomenon Concerning Blocking Numbers and Kissing Numbers.-
3 A Basic Approximation Result.-
4 Minkowski's Criteria for Packing Lattices and the Densest Packing Lattices.-
5 A Phenomenon Concerning Kissing Numbers and Packing Densities.-
6 Remarks and Open Problems.- 5 Category Phenomena.-
1 Introduction.-
2 Gruber's Phenomenon.-
3 The Aleksandrov-Busemann-Feller Theorem.-
4 A Theorem of Zamfirescu.-
5 The Schneider-Zamfirescu Phenomenon.-
6 Some Remarks.- 6 The Busemann-Petty Problem.-
1 Introduction.-
2 Steiner Symmetrization.-
3 A Theorem of Busemann.-
4 The Larman-Rogers Phenomenon.-
5 Schneider's Phenomenon.-
6 Some Historical Remarks.- 7 Dvoretzky's Theorem.-
1 Introduction.-
2 Preliminaries.-
3 Technical Introduction.-
4 A Lemma of Dvoretzky and Rogers.-
5 An Estimate for ?V(AV).-
6 ?-nets and ?-spheres.-
7 A Proof of Dvoretzky's Theorem.-
8 An Upper Bound for M (n, ?).-
9 Some Historical Remarks.- Inedx.