The text presents design sensitivity analysis theory and numerical implementation to create advanced design methodologies for mechanical systems and structural components, which will permit economical designs that are strong, stable, reliable, and have long life service. The design methodologies can be used by design engineers in the university, industry, and government to obtain optimal structural designs for ground vehicles, aricraft, space systems, ships, heavy equipment, machinery, biomedical devices, etc. Extensive numerical methods for computing design sensitivity are included in the text for practical application and software development. The numerical method allows seamless integration of CAD-FEA-DSA software tools, so that design optimization can be carried out using CAD geometric models instead of FEA models. This capaibility allows integration of CAD-CAE-CAM so that optimized designs can be manufactured effectively.
Book 2 covers design sensitivity analysis of nonlinear structural systems using continuum design sensitivity analysis methods. It also discusses practical design tools and applications; sizing and shape design parameterization, design velocity field computation, numerical implementation of the sensitivity for general-purpose code development, and various other practical design applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This recent book ... deals with all aspects of sensitivity analysis for structural systems. ... One highlight is the elaboration on the differences in working with the reduced stiffness matrix and with the generalized stiffness matrix. ... There are many other details that readers will appreciate when using the book ... . The book is a welcome, up-to-date addition to the literature in the area and it is a must as a reference volume for any research group working in sensitivity analysis and design optimization." (Martin P. Bendsøe, Structural Multidisciplinary Optimization, Vol. 32, 2006)