157,95 €
157,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
79 °P sammeln
157,95 €
157,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
79 °P sammeln
Als Download kaufen
157,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
79 °P sammeln
Jetzt verschenken
157,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
79 °P sammeln
  • Format: ePub

Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 3.77MB
Produktbeschreibung
Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ronald B. Guenther is an Emeritus Professor in the Department of Mathematics at Oregon State University. His research interests include fluid mechanics and mathematically modelling deterministic systems and the ordinary and partial differential equations that arise from these models.

John W. Lee is an Emeritus Professor in the Department of Mathematics at Oregon State University. His research interests include differential equations, especially oscillatory properties of problems of Sturm-Liouville type and related approximation theory, and integral equations.