128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
64 °P sammeln
128,95 €
128,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
64 °P sammeln
Als Download kaufen
128,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
64 °P sammeln
Jetzt verschenken
128,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
64 °P sammeln
  • Format: PDF

Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.

Produktbeschreibung
Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Yunqian Ma is Senior Principal Research Scientist at Honeywell Labs. Guodong Guo is an Assistant Professor at West Virginia University.
Rezensionen
From the book reviews:
"The book brings substantial contributions to the field of SVMs from both theoretical and practical points of view. The concepts and methods are presented in a clear and accessible way, and the illustrative examples and applications provide a valuable source of inspiration for similar developments. ... This book is of considerable value to researchers in the fields of machine learning, data mining, and statistical pattern recognition." (L. State, Computing Reviews, August, 2014)