Survival Analysis offers an integrated blend of statistical methods and machine learning useful in analysis of survival data. The purpose of the offering is to give an exposure to the machine learning trends for lifetime data analysis.
Features:
- Classical survival analysis techniques for estimating statistical functional and hypotheses testing
- Regression methods covering the popular Cox relative risk regression model, Aalen's additive hazards model, etc.
- Information criteria to facilitate model selection including Akaike, Bayes, and Focused
- Penalized methods
- Survival trees and ensemble techniques of bagging, boosting, and random survival forests
- A brief exposure of neural networks for survival data
- R program illustration throughout the book
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.