161,95 €
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
81 °P sammeln
161,95 €
161,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
81 °P sammeln
Als Download kaufen
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
81 °P sammeln
Jetzt verschenken
161,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
81 °P sammeln
  • Format: ePub

Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading…mehr

Produktbeschreibung
Sustainable Material Solutions for Solar Energy Technologies: Processing Techniques and Applications provides an overview of challenges that must be addressed to efficiently utilize solar energy. The book explores novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and current state-of-the-art. Leading international experts discuss the applications, challenges, and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this field.

  • Explores the fundamentals of sustainable materials for solar energy applications, with in-depth discussions of the most promising material solutions for solar energy technologies: photocatalysis, photovoltaic, hydrogen production, harvesting and storage
  • Discusses the environmental challenges to be overcome and importance of efficient materials utilization for clean energy
  • Looks at design materials processing and optimization of device fabrication via metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, and life-cycle analysis

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Mariana Amorim Fraga is a Professor in the Electrical Engineering Program, Mackenzie Presbyterian University, São Paulo, Brazil. Her research interests focus mainly on the synthesis and characterization of nanomaterials for the development of sensors, electronic devices, and energy technologies.

Delaina Amos received a BS in Chemical Engineering from the University of Virginia in 1989. She later obtained a MS and PhD in Chemical Engineering from the University of California Berkley in 1992 and 1996 where she was both a GEM MS fellow and among the first class of GEM Engineering PhD Fellows. After completing a one-year industrial post-doctoral assignment at Eastman Kodak, Dr. Amos joined the research staff at Eastman Kodak in 1997. Dr. Amos held a variety of roles at Kodak including research scientist, R&D team leader, technical liaison, and intellectual property co-leader. While at Kodak, work that she was involved in went into creating the new platform of pigment-based inks for the Kodak consumer printer lines. Dr. Amos joined the faculty of the Department of Chemical Engineering at the University of Louisville in June 2010 as an Associate Professor.