6,49 €
6,49 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
6,49 €
6,49 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
6,49 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
6,49 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Tackling Imbalanced Data with Python: Advanced Techniques and Real-World Applications for Tackling Class Imbalance is a comprehensive guide designed for data scientists, machine learning engineers, and practitioners who face the ubiquitous challenge of imbalanced datasets. This book addresses one of the most critical yet underexplored problems in machine learning, where traditional algorithms fail to perform effectively on datasets with skewed class distributions.
The book provides a systematic approach to understanding and solving class imbalance problems, covering everything from
…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 0.95MB
  • FamilySharing(5)
Produktbeschreibung
Tackling Imbalanced Data with Python: Advanced Techniques and Real-World Applications for Tackling Class Imbalance is a comprehensive guide designed for data scientists, machine learning engineers, and practitioners who face the ubiquitous challenge of imbalanced datasets. This book addresses one of the most critical yet underexplored problems in machine learning, where traditional algorithms fail to perform effectively on datasets with skewed class distributions.

The book provides a systematic approach to understanding and solving class imbalance problems, covering everything from fundamental concepts to cutting-edge techniques. Readers will master data-level solutions including SMOTE and advanced synthetic data generation, algorithm-level approaches such as cost-sensitive learning and focal loss, and ensemble methods specifically designed for imbalanced data. The book extensively covers deep learning adaptations, computer vision applications, and natural language processing solutions for imbalanced scenarios.

With 14 comprehensive chapters containing over 100 practical techniques, this book bridges the gap between theoretical understanding and real-world implementation. Each chapter includes detailed Python implementations using popular libraries like scikit-learn, imbalanced-learn, PyTorch, and TensorFlow. Industry-specific case studies spanning healthcare, finance, cybersecurity, and manufacturing demonstrate practical applications. The book also addresses production deployment challenges, model monitoring, and emerging topics like federated learning and explainable AI for imbalanced data, making it an essential resource for building robust, production-ready machine learning systems.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.


Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.