Techniques and Applications of Hyperspectral Image Analysis (eBook, PDF)
Redaktion: Grahn, Hans; Geladi, Paul
146,99 €
146,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
146,99 €
Als Download kaufen
146,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
146,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Techniques and Applications of Hyperspectral Image Analysis (eBook, PDF)
Redaktion: Grahn, Hans; Geladi, Paul
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Techniques and Applications of Hyperspectral Image Analysis gives an introduction to the field of image analysis using hyperspectral techniques, and includes definitions and instrument descriptions. Other imaging topics that are covered are segmentation, regression and classification. The book discusses how high quality images of large data files can be structured and archived. Imaging techniques also demand accurate calibration, and are covered in sections about multivariate calibration techniques. The book explains the most important instruments for hyperspectral imaging in more technical…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 20.41MB
Andere Kunden interessierten sich auch für
- Chun LiDrug Delivery Applications of Noninvasive Imaging (eBook, PDF)154,99 €
- Colorimetry (eBook, PDF)158,99 €
- Robin A. de GraafIn Vivo NMR Spectroscopy (eBook, PDF)120,99 €
- Andre S. MerbachThe Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (eBook, PDF)165,99 €
- Joseph B. LambertNuclear Magnetic Resonance Spectroscopy (eBook, PDF)66,99 €
- Roy S. BernsBillmeyer and Saltzman's Principles of Color Technology (eBook, PDF)129,99 €
- Sebastian HirschMagnetic Resonance Elastography (eBook, PDF)144,99 €
-
-
-
Techniques and Applications of Hyperspectral Image Analysis gives an introduction to the field of image analysis using hyperspectral techniques, and includes definitions and instrument descriptions. Other imaging topics that are covered are segmentation, regression and classification. The book discusses how high quality images of large data files can be structured and archived. Imaging techniques also demand accurate calibration, and are covered in sections about multivariate calibration techniques. The book explains the most important instruments for hyperspectral imaging in more technical detail. A number of applications from medical and chemical imaging are presented and there is an emphasis on data analysis including modeling, data visualization, model testing and statistical interpretation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-Blackwell
- Erscheinungstermin: 27. September 2007
- Englisch
- ISBN-13: 9780470010877
- Artikelnr.: 37289517
- Verlag: Wiley-Blackwell
- Erscheinungstermin: 27. September 2007
- Englisch
- ISBN-13: 9780470010877
- Artikelnr.: 37289517
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Paul Geladi received a Ph.D. in chemistry at the University of Antwerp in 1979. In 1990, he became associate professor at Umeå University, with interests in multivariate calibration, multivariate image analysis and multiway analysis. He was awarded the EAS award for Chemometrics in 2002. Currently he is head of research for NIRCE centered in Umeå and Vasa. Paul Geladi has coauthored about 90 scientific papers and some 20 book chapters and has given many invited lectures throughout Europe and North America. He was European editor of Journal of Chemometrics from 1989 - 1995, and has been review editor of the journal since 1999. He served as a member of the Editorial Board of Chemometrics and Intelligent Laboratory Systems from 1986 to 1991. Hans F Grahn received his Ph.D. in Physical Organic Chemistry in 1986. Following several years of work abroad he began MRI studies in the laboratory of Dr Zeverenyi at SUNY Health Center, NY. At this time (1988) Hans also began to collaborate with Paul Geladi and the MIA (Multivariate Image Analysis) software for MRI multivariate images was written. In 1990 Hans received funding from the Swedish Natural Science Foundation for 2D NMR work at Umeå University. In 1991 he began a 3 year project at AstraZeneca. During this period he continued to collaborate with the pharmaceutical industry and the Karolinska Institute, where he received a position as a preclinical researcher and associate Professor at a new MRI -centre. Hans has more than 35 coauthored scientific papers and book chapters. He is now active as Business Developer in the Medical Imaging business and is also active in his own company.
Preface.
List of Contributors.
List of Abbreviations.
1 Multivariate Images, Hyperspectral Imaging: Background and Equipment
(Paul L. M. Geladi, Hans F. Grahn and James E. Burger).
2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing,
Technology and Industry (Kim H. Esbensen and Thorbjørn T. Lied).
3 Clustering and Classification in Multispectral Imaging for Quality
Inspection of Postharvest Products (Jacco C. Noordam and Willie H. A. M.
van den Broek).
4 Self-modeling Image Analysis with SIMPLISMA (Willem Windig, Sharon Markel
and Patrick M. Thompson).
5 Multivariate Analysis of Spectral Images Composed of Count Data (Michael
R. Keenan).
6 Hyperspectral Image Data Conditioning and Regression Analysis (James E.
Burger and Paul L. M. Geladi).
7 Principles of Image Cross-validation (ICV): Representative Segmentation
of Image Data Structures (Kim H. Esbensen and Thorbjørn T. Lied).
8 Detection, Classification, and Quantification in Hyperspectral Images
Using Classical Least Squares Models (Neal B. Gallagher).
9 Calibration Standards and Image Calibration (Paul L. M. Geladi).
10 Multivariate Movies and their Applications in Pharmaceutical and Polymer
Dissolution Studies (Jaap van der Weerd and Sergei G. Kazarian).
11 Multivariate Image Analysis of Magnetic Resonance Images: Component
Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA)
(Brian Antalek, Willem Windig and Joseph P. Hornak).
12 Hyperspectral Imaging Techniques: an Attractive Solution for the
Analysis of Biological and Agricultural Materials (Vincent Baeten, Juan
Antonio Fernández Pierna and Pierre Dardenne).
13 Application of Multivariate Image Analysis in Nuclear Medicine:
Principal Component Analysis (PCA) on Dynamic Human Brain Studies with
Positron Emission Tomography (PET) for Discrimination of Areas of Disease
at High Noise Levels (Pasha Razifar and Mats Bergström).
14 Near Infrared Chemical Imaging: Beyond the Pictures (E. Neil Lewis,
Janie Dubois, Linda H. Kidder and Kenneth S. Haber).
Index.
List of Contributors.
List of Abbreviations.
1 Multivariate Images, Hyperspectral Imaging: Background and Equipment
(Paul L. M. Geladi, Hans F. Grahn and James E. Burger).
2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing,
Technology and Industry (Kim H. Esbensen and Thorbjørn T. Lied).
3 Clustering and Classification in Multispectral Imaging for Quality
Inspection of Postharvest Products (Jacco C. Noordam and Willie H. A. M.
van den Broek).
4 Self-modeling Image Analysis with SIMPLISMA (Willem Windig, Sharon Markel
and Patrick M. Thompson).
5 Multivariate Analysis of Spectral Images Composed of Count Data (Michael
R. Keenan).
6 Hyperspectral Image Data Conditioning and Regression Analysis (James E.
Burger and Paul L. M. Geladi).
7 Principles of Image Cross-validation (ICV): Representative Segmentation
of Image Data Structures (Kim H. Esbensen and Thorbjørn T. Lied).
8 Detection, Classification, and Quantification in Hyperspectral Images
Using Classical Least Squares Models (Neal B. Gallagher).
9 Calibration Standards and Image Calibration (Paul L. M. Geladi).
10 Multivariate Movies and their Applications in Pharmaceutical and Polymer
Dissolution Studies (Jaap van der Weerd and Sergei G. Kazarian).
11 Multivariate Image Analysis of Magnetic Resonance Images: Component
Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA)
(Brian Antalek, Willem Windig and Joseph P. Hornak).
12 Hyperspectral Imaging Techniques: an Attractive Solution for the
Analysis of Biological and Agricultural Materials (Vincent Baeten, Juan
Antonio Fernández Pierna and Pierre Dardenne).
13 Application of Multivariate Image Analysis in Nuclear Medicine:
Principal Component Analysis (PCA) on Dynamic Human Brain Studies with
Positron Emission Tomography (PET) for Discrimination of Areas of Disease
at High Noise Levels (Pasha Razifar and Mats Bergström).
14 Near Infrared Chemical Imaging: Beyond the Pictures (E. Neil Lewis,
Janie Dubois, Linda H. Kidder and Kenneth S. Haber).
Index.
Preface.
List of Contributors.
List of Abbreviations.
1 Multivariate Images, Hyperspectral Imaging: Background and Equipment
(Paul L. M. Geladi, Hans F. Grahn and James E. Burger).
2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing,
Technology and Industry (Kim H. Esbensen and Thorbjørn T. Lied).
3 Clustering and Classification in Multispectral Imaging for Quality
Inspection of Postharvest Products (Jacco C. Noordam and Willie H. A. M.
van den Broek).
4 Self-modeling Image Analysis with SIMPLISMA (Willem Windig, Sharon Markel
and Patrick M. Thompson).
5 Multivariate Analysis of Spectral Images Composed of Count Data (Michael
R. Keenan).
6 Hyperspectral Image Data Conditioning and Regression Analysis (James E.
Burger and Paul L. M. Geladi).
7 Principles of Image Cross-validation (ICV): Representative Segmentation
of Image Data Structures (Kim H. Esbensen and Thorbjørn T. Lied).
8 Detection, Classification, and Quantification in Hyperspectral Images
Using Classical Least Squares Models (Neal B. Gallagher).
9 Calibration Standards and Image Calibration (Paul L. M. Geladi).
10 Multivariate Movies and their Applications in Pharmaceutical and Polymer
Dissolution Studies (Jaap van der Weerd and Sergei G. Kazarian).
11 Multivariate Image Analysis of Magnetic Resonance Images: Component
Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA)
(Brian Antalek, Willem Windig and Joseph P. Hornak).
12 Hyperspectral Imaging Techniques: an Attractive Solution for the
Analysis of Biological and Agricultural Materials (Vincent Baeten, Juan
Antonio Fernández Pierna and Pierre Dardenne).
13 Application of Multivariate Image Analysis in Nuclear Medicine:
Principal Component Analysis (PCA) on Dynamic Human Brain Studies with
Positron Emission Tomography (PET) for Discrimination of Areas of Disease
at High Noise Levels (Pasha Razifar and Mats Bergström).
14 Near Infrared Chemical Imaging: Beyond the Pictures (E. Neil Lewis,
Janie Dubois, Linda H. Kidder and Kenneth S. Haber).
Index.
List of Contributors.
List of Abbreviations.
1 Multivariate Images, Hyperspectral Imaging: Background and Equipment
(Paul L. M. Geladi, Hans F. Grahn and James E. Burger).
2 Principles of Multivariate Image Analysis (MIA) in Remote Sensing,
Technology and Industry (Kim H. Esbensen and Thorbjørn T. Lied).
3 Clustering and Classification in Multispectral Imaging for Quality
Inspection of Postharvest Products (Jacco C. Noordam and Willie H. A. M.
van den Broek).
4 Self-modeling Image Analysis with SIMPLISMA (Willem Windig, Sharon Markel
and Patrick M. Thompson).
5 Multivariate Analysis of Spectral Images Composed of Count Data (Michael
R. Keenan).
6 Hyperspectral Image Data Conditioning and Regression Analysis (James E.
Burger and Paul L. M. Geladi).
7 Principles of Image Cross-validation (ICV): Representative Segmentation
of Image Data Structures (Kim H. Esbensen and Thorbjørn T. Lied).
8 Detection, Classification, and Quantification in Hyperspectral Images
Using Classical Least Squares Models (Neal B. Gallagher).
9 Calibration Standards and Image Calibration (Paul L. M. Geladi).
10 Multivariate Movies and their Applications in Pharmaceutical and Polymer
Dissolution Studies (Jaap van der Weerd and Sergei G. Kazarian).
11 Multivariate Image Analysis of Magnetic Resonance Images: Component
Resolution with the Direct Exponential Curve Resolution Algorithm (DECRA)
(Brian Antalek, Willem Windig and Joseph P. Hornak).
12 Hyperspectral Imaging Techniques: an Attractive Solution for the
Analysis of Biological and Agricultural Materials (Vincent Baeten, Juan
Antonio Fernández Pierna and Pierre Dardenne).
13 Application of Multivariate Image Analysis in Nuclear Medicine:
Principal Component Analysis (PCA) on Dynamic Human Brain Studies with
Positron Emission Tomography (PET) for Discrimination of Areas of Disease
at High Noise Levels (Pasha Razifar and Mats Bergström).
14 Near Infrared Chemical Imaging: Beyond the Pictures (E. Neil Lewis,
Janie Dubois, Linda H. Kidder and Kenneth S. Haber).
Index.