Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose. The…mehr
This book offers a self-contained account of the 3-manifold invariants arising from the original Jones polynomial. These are the Witten-Reshetikhin-Turaev and the Turaev-Viro invariants. Starting from the Kauffman bracket model for the Jones polynomial and the diagrammatic Temperley-Lieb algebra, higher-order polynomial invariants of links are constructed and combined to form the 3-manifold invariants. The methods in this book are based on a recoupling theory for the Temperley-Lieb algebra. This recoupling theory is a q-deformation of the SU(2) spin networks of Roger Penrose.
The recoupling theory is developed in a purely combinatorial and elementary manner. Calculations are based on a reformulation of the Kirillov-Reshetikhin shadow world, leading to expressions for all the invariants in terms of state summations on 2-cell complexes. Extensive tables of the invariants are included. Manifolds in these tables are recognized by surgery presentations and by means of 3-gems (graph encoded 3-manifolds) in an approach pioneered by Sostenes Lins. The appendices include information about gems, examples of distinct manifolds with the same invariants, and applications to the Turaev-Viro invariant and to the Crane-Yetter invariant of 4-manifolds.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Louis H. Kauffman is Professor of Mathematics at the University of Illinois, Chicago. Sostenes Lins is Professor of Mathematics at the Universidade Federal de Pernambuco in Recife, Brazil.
Inhaltsangabe
1 Introduction 1 2 Bracket Polynomial, Temperley-Lieb Algebra 5 3 Jones-Wenzl Projectors 13 4 The 3-Vertex 22 5 Properties of Projectors and 3-Vertices 36 6 [theta]--Evaluations 45 7 Recoupling Theory Via Temperley-Lieb Algebra 60 8 Chromatic Evaluations and the Tetrahedron 76 9 A Summary of Recoupling Theory 93 10 A 3-Manifold Invariant by State Summation 102 11 The Shadow World 114 12 The Witten-Reshetikhin-Turaev Invariant 129 13 Blinks [actual symbol not reproducible] 3-Gems: Recognizing 3-Manifolds 160 14 Tables of Quantum Invariants 185 Bibliography 290 Index 295
1 Introduction 1 2 Bracket Polynomial, Temperley-Lieb Algebra 5 3 Jones-Wenzl Projectors 13 4 The 3-Vertex 22 5 Properties of Projectors and 3-Vertices 36 6 [theta]--Evaluations 45 7 Recoupling Theory Via Temperley-Lieb Algebra 60 8 Chromatic Evaluations and the Tetrahedron 76 9 A Summary of Recoupling Theory 93 10 A 3-Manifold Invariant by State Summation 102 11 The Shadow World 114 12 The Witten-Reshetikhin-Turaev Invariant 129 13 Blinks [actual symbol not reproducible] 3-Gems: Recognizing 3-Manifolds 160 14 Tables of Quantum Invariants 185 Bibliography 290 Index 295
Rezensionen
This extremely useful volume provides a self-contained treatment of the construction of 3-manifold invariants directly from the combinatorics of the Jones polynomial in Kauffman's bracket formulation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826