48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
24 °P sammeln
Jetzt verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
24 °P sammeln
  • Format: PDF

A number of applications including scientific spectroscopy, security screening, and medical imaging have benefitted from the development and utilization of new and emerging terahertz (THz) generation and detection techniques. Exploring recent discoveries and the advancements of biological behaviors through THz spectroscopy and imaging and the devel

Produktbeschreibung
A number of applications including scientific spectroscopy, security screening, and medical imaging have benefitted from the development and utilization of new and emerging terahertz (THz) generation and detection techniques. Exploring recent discoveries and the advancements of biological behaviors through THz spectroscopy and imaging and the devel

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Joo-Hiuk Son received his BS and MS in electronics engineering from Seoul National University, Seoul, Republic of Korea, in 1986 and 1988, respectively, and his PhD in electrical engineering from the University of Michigan, Ann Arbor, in 1994. In the early years, his research was focused on the characterization of electrical and optical properties of semiconductors and various nanosized materials. In recent years, his interest has shifted to terahertz electromagnetic interactions with biological materials and their applications in medicine. Combining his expertise on nanomaterials and terahertz medical diagnosis, he invented a highly sensitive terahertz molecular imaging technique using nanoparticle probes.