Peter Hall
The Bootstrap and Edgeworth Expansion (eBook, PDF)
112,95 €
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
56 °P sammeln
112,95 €
Als Download kaufen
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
56 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
112,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
56 °P sammeln
Peter Hall
The Bootstrap and Edgeworth Expansion (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Bootstrap methods are among the most active areas of statistical research, and are important to those interested in statistical theory and applications. This ground-breaking reference remains a basic reference in this important area.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 24.89MB
Andere Kunden interessierten sich auch für
Analytical Methods in Statistics (eBook, PDF)80,95 €
Bootstrapping and Related Techniques (eBook, PDF)40,95 €
Kai-Tai FangRepresentative Points of Statistical Distributions (eBook, PDF)48,95 €
Philippe BarbeThe Weighted Bootstrap (eBook, PDF)72,95 €
Anirban DasguptaAsymptotic Theory of Statistics and Probability (eBook, PDF)68,95 €
S. N. LahiriResampling Methods for Dependent Data (eBook, PDF)175,95 €
Jérome DedeckerWeak Dependence: With Examples and Applications (eBook, PDF)88,95 €-
-
-
Bootstrap methods are among the most active areas of statistical research, and are important to those interested in statistical theory and applications. This ground-breaking reference remains a basic reference in this important area.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 354
- Erscheinungstermin: 1. Dezember 2013
- Englisch
- ISBN-13: 9781461243847
- Artikelnr.: 44058648
- Verlag: Springer US
- Seitenzahl: 354
- Erscheinungstermin: 1. Dezember 2013
- Englisch
- ISBN-13: 9781461243847
- Artikelnr.: 44058648
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1: Principles of Bootstrap Methodology.
2: Principles of Edgeworth Expansion.
3: An Edgeworth View of the Bootstrap.
4: Bootstrap Curve Estimation.
5: Details of Mathematical Rigour.
Appendix I: Number and Sizes of Atoms of Nonparametric Bootstrap Distribution.
Appendix II: Monte Carlo Simulation.
II.1 Introduction.
II.2 Uniform Resampling.
II.3 Linear Approximation.
II.4 Centring Method.
II.5 Balanced Resampling.
II.6 Antithetic Resampling.
II.7 Importance Resampling.
II.7.1 Introduction.
II.7.2 Concept of Importance Resampling.
II.7.3 Importance Resampling for Approximating Bias, Variance, Skewness, etc..
II.7.4 Importance Resampling for a Distribution Function.
II.8 Quantile Estimation.
Appendix III: Confidence Pictures.
Appendix IV: A Non
Standard Example: Quantite Error Estimation.
IV. 1 Introduction.
IV.2 Definition of the Mean Squared Error Estimate.
IV.3 Convergence Rate of the Mean Squared Error Estimate.
IV.4 Edgeworth Expansions for the Studentized Bootstrap Quantile Estimate.
Appendix V: A Non
Edgeworth View of the Bootstrap.
References.
Author Index.
2: Principles of Edgeworth Expansion.
3: An Edgeworth View of the Bootstrap.
4: Bootstrap Curve Estimation.
5: Details of Mathematical Rigour.
Appendix I: Number and Sizes of Atoms of Nonparametric Bootstrap Distribution.
Appendix II: Monte Carlo Simulation.
II.1 Introduction.
II.2 Uniform Resampling.
II.3 Linear Approximation.
II.4 Centring Method.
II.5 Balanced Resampling.
II.6 Antithetic Resampling.
II.7 Importance Resampling.
II.7.1 Introduction.
II.7.2 Concept of Importance Resampling.
II.7.3 Importance Resampling for Approximating Bias, Variance, Skewness, etc..
II.7.4 Importance Resampling for a Distribution Function.
II.8 Quantile Estimation.
Appendix III: Confidence Pictures.
Appendix IV: A Non
Standard Example: Quantite Error Estimation.
IV. 1 Introduction.
IV.2 Definition of the Mean Squared Error Estimate.
IV.3 Convergence Rate of the Mean Squared Error Estimate.
IV.4 Edgeworth Expansions for the Studentized Bootstrap Quantile Estimate.
Appendix V: A Non
Edgeworth View of the Bootstrap.
References.
Author Index.
1: Principles of Bootstrap Methodology.- 2: Principles of Edgeworth Expansion.- 3: An Edgeworth View of the Bootstrap.- 4: Bootstrap Curve Estimation.- 5: Details of Mathematical Rigour.- Appendix I: Number and Sizes of Atoms of Nonparametric Bootstrap Distribution.- Appendix II: Monte Carlo Simulation.- II.1 Introduction.- II.2 Uniform Resampling.- II.3 Linear Approximation.- II.4 Centring Method.- II.5 Balanced Resampling.- II.6 Antithetic Resampling.- II.7 Importance Resampling.- II.7.1 Introduction.- II.7.2 Concept of Importance Resampling.- II.7.3 Importance Resampling for Approximating Bias, Variance, Skewness, etc..- II.7.4 Importance Resampling for a Distribution Function.- II.8 Quantile Estimation.- Appendix III: Confidence Pictures.- Appendix IV: A Non-Standard Example: Quantite Error Estimation.- IV. 1 Introduction.- IV.2 Definition of the Mean Squared Error Estimate.- IV.3 Convergence Rate of the Mean Squared Error Estimate.- IV.4 Edgeworth Expansions for the Studentized Bootstrap Quantile Estimate.- Appendix V: A Non-Edgeworth View of the Bootstrap.- References.- Author Index.
1: Principles of Bootstrap Methodology.
2: Principles of Edgeworth Expansion.
3: An Edgeworth View of the Bootstrap.
4: Bootstrap Curve Estimation.
5: Details of Mathematical Rigour.
Appendix I: Number and Sizes of Atoms of Nonparametric Bootstrap Distribution.
Appendix II: Monte Carlo Simulation.
II.1 Introduction.
II.2 Uniform Resampling.
II.3 Linear Approximation.
II.4 Centring Method.
II.5 Balanced Resampling.
II.6 Antithetic Resampling.
II.7 Importance Resampling.
II.7.1 Introduction.
II.7.2 Concept of Importance Resampling.
II.7.3 Importance Resampling for Approximating Bias, Variance, Skewness, etc..
II.7.4 Importance Resampling for a Distribution Function.
II.8 Quantile Estimation.
Appendix III: Confidence Pictures.
Appendix IV: A Non
Standard Example: Quantite Error Estimation.
IV. 1 Introduction.
IV.2 Definition of the Mean Squared Error Estimate.
IV.3 Convergence Rate of the Mean Squared Error Estimate.
IV.4 Edgeworth Expansions for the Studentized Bootstrap Quantile Estimate.
Appendix V: A Non
Edgeworth View of the Bootstrap.
References.
Author Index.
2: Principles of Edgeworth Expansion.
3: An Edgeworth View of the Bootstrap.
4: Bootstrap Curve Estimation.
5: Details of Mathematical Rigour.
Appendix I: Number and Sizes of Atoms of Nonparametric Bootstrap Distribution.
Appendix II: Monte Carlo Simulation.
II.1 Introduction.
II.2 Uniform Resampling.
II.3 Linear Approximation.
II.4 Centring Method.
II.5 Balanced Resampling.
II.6 Antithetic Resampling.
II.7 Importance Resampling.
II.7.1 Introduction.
II.7.2 Concept of Importance Resampling.
II.7.3 Importance Resampling for Approximating Bias, Variance, Skewness, etc..
II.7.4 Importance Resampling for a Distribution Function.
II.8 Quantile Estimation.
Appendix III: Confidence Pictures.
Appendix IV: A Non
Standard Example: Quantite Error Estimation.
IV. 1 Introduction.
IV.2 Definition of the Mean Squared Error Estimate.
IV.3 Convergence Rate of the Mean Squared Error Estimate.
IV.4 Edgeworth Expansions for the Studentized Bootstrap Quantile Estimate.
Appendix V: A Non
Edgeworth View of the Bootstrap.
References.
Author Index.
1: Principles of Bootstrap Methodology.- 2: Principles of Edgeworth Expansion.- 3: An Edgeworth View of the Bootstrap.- 4: Bootstrap Curve Estimation.- 5: Details of Mathematical Rigour.- Appendix I: Number and Sizes of Atoms of Nonparametric Bootstrap Distribution.- Appendix II: Monte Carlo Simulation.- II.1 Introduction.- II.2 Uniform Resampling.- II.3 Linear Approximation.- II.4 Centring Method.- II.5 Balanced Resampling.- II.6 Antithetic Resampling.- II.7 Importance Resampling.- II.7.1 Introduction.- II.7.2 Concept of Importance Resampling.- II.7.3 Importance Resampling for Approximating Bias, Variance, Skewness, etc..- II.7.4 Importance Resampling for a Distribution Function.- II.8 Quantile Estimation.- Appendix III: Confidence Pictures.- Appendix IV: A Non-Standard Example: Quantite Error Estimation.- IV. 1 Introduction.- IV.2 Definition of the Mean Squared Error Estimate.- IV.3 Convergence Rate of the Mean Squared Error Estimate.- IV.4 Edgeworth Expansions for the Studentized Bootstrap Quantile Estimate.- Appendix V: A Non-Edgeworth View of the Bootstrap.- References.- Author Index.







