Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
As machine-readable data comes to play an increasingly important role in everyday life, researchers find themselves with rich resources for studying society. The novel methods and tools needed to work with such data require not only new knowledge and skills, but also a new way of thinking about best research practices. This book critically reflects on the role and usefulness of big data, challenging overly optimistic expectations about what such information can reveal, introducing practices and methods for its analysis and visualisation, and raising important political and ethical questions regarding its collection, handling, and presentation.…mehr
As machine-readable data comes to play an increasingly important role in everyday life, researchers find themselves with rich resources for studying society. The novel methods and tools needed to work with such data require not only new knowledge and skills, but also a new way of thinking about best research practices. This book critically reflects on the role and usefulness of big data, challenging overly optimistic expectations about what such information can reveal, introducing practices and methods for its analysis and visualisation, and raising important political and ethical questions regarding its collection, handling, and presentation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Mirko Tobias Schäfer is Associate Professor of AI, Data & Society at Utrecht University's research area 'Governing the Digital Society' and the Department for Information and Computing Sciences. Mirko is co-founder and Sciences lead of the Data School. He studies the datafication of public management and engages in the development of responsible and accountable AI and data practices. Karin van Es is Associate Professor of Media and Culture Studies and project lead Humanities at Data School, both at Utrecht University.
Inhaltsangabe
Acknowledgements, Foreword, Introduction: New Brave World Karin van Es and Mirko Tobias Schäfer, Section 1: Studying Culture through Data Humanistic Data Research: An Encounter between Epistemic Traditions Eef Masson Towards a 'Humanistic Cinemetrics'? Christian Gosvig Olesen Cultural Analytics, Social Computing, and Digital Humanities Lev Manovich Case Study: On Broadway Daniel Goddemeyer, Moritz Stefaner, Dominikus Baur, and Lev Manovich Foundations of Digital Methods: Query Design Richard Rogers Case Study: Webs and Streams: Mapping Issue-Networks Using Hyperlinks, Hashtags, and (Potentially) Embedded Content Natalia Sánchez-Querubín, Section 2: Data Practices in Digital Data Analysis Digital Methods: From Challenges to Bildung Bernhard Rieder and Theo Röhle Data, Culture, and the Ambivalence of Algorithms William Uricchio Unknowing Algorithms: On Transparency of Un-operable Black Boxes Johannes Paßmann and Asher Boersma Social Data APIs: Origin, Types, Issues Cornelius Puschmann and Julian Ausserhofer How to Tell Stories with Networks: Exploring the Narrative Affordances of Graphs with the Iliad Tommaso Venturini, Liliana Bounegru, Mathieu Jacomy, and Jonathan Gray Towards a Reflexive Digital Data Analysis Karin van Es, Nicolás López Coombs and Thomas Boeschoten, Section 3: Research Ethics Get Your Hands Dirty: Research Ethics in an Age of Big Data: How Digital Methods and 'Big Data' Practices Challenge Traditional Guidelines for Research Integrity Gerwin van Schie, Irene Westra, and Mirko Tobias Schäfer Research Ethics in Context: Decision-Making in Digital Research Annette Markham and Elizabeth Buchanan Data and Discrimination Koen Leurs and Tamara Shepherd ,Section 4: Key Ideas in Big Data Research: The Myth of Big Data, Data Point Critique, Algorithmic Exceptionalism of Algorithms and the Need for a Dialogue with Technology The Myth of Big Data Nick Couldry Data-Point Critique Carolin Gerlitz Opposing the Exceptionalism of the Algorithm Evgeny Morozov The Need for a Dialogue with Technology Mercedes Bunz Tools, Notes on Contributors, Index.
Acknowledgements, Foreword, Introduction: New Brave World Karin van Es and Mirko Tobias Schäfer, Section 1: Studying Culture through Data Humanistic Data Research: An Encounter between Epistemic Traditions Eef Masson Towards a 'Humanistic Cinemetrics'? Christian Gosvig Olesen Cultural Analytics, Social Computing, and Digital Humanities Lev Manovich Case Study: On Broadway Daniel Goddemeyer, Moritz Stefaner, Dominikus Baur, and Lev Manovich Foundations of Digital Methods: Query Design Richard Rogers Case Study: Webs and Streams: Mapping Issue-Networks Using Hyperlinks, Hashtags, and (Potentially) Embedded Content Natalia Sánchez-Querubín, Section 2: Data Practices in Digital Data Analysis Digital Methods: From Challenges to Bildung Bernhard Rieder and Theo Röhle Data, Culture, and the Ambivalence of Algorithms William Uricchio Unknowing Algorithms: On Transparency of Un-operable Black Boxes Johannes Paßmann and Asher Boersma Social Data APIs: Origin, Types, Issues Cornelius Puschmann and Julian Ausserhofer How to Tell Stories with Networks: Exploring the Narrative Affordances of Graphs with the Iliad Tommaso Venturini, Liliana Bounegru, Mathieu Jacomy, and Jonathan Gray Towards a Reflexive Digital Data Analysis Karin van Es, Nicolás López Coombs and Thomas Boeschoten, Section 3: Research Ethics Get Your Hands Dirty: Research Ethics in an Age of Big Data: How Digital Methods and 'Big Data' Practices Challenge Traditional Guidelines for Research Integrity Gerwin van Schie, Irene Westra, and Mirko Tobias Schäfer Research Ethics in Context: Decision-Making in Digital Research Annette Markham and Elizabeth Buchanan Data and Discrimination Koen Leurs and Tamara Shepherd ,Section 4: Key Ideas in Big Data Research: The Myth of Big Data, Data Point Critique, Algorithmic Exceptionalism of Algorithms and the Need for a Dialogue with Technology The Myth of Big Data Nick Couldry Data-Point Critique Carolin Gerlitz Opposing the Exceptionalism of the Algorithm Evgeny Morozov The Need for a Dialogue with Technology Mercedes Bunz Tools, Notes on Contributors, Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826