46,95 €
								 46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
 46,95 €
									
						Als Download kaufen
						
					
				 46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
							Jetzt verschenken
							
Alle Infos zum eBook verschenken
						
					 46,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
- Format: PDF
 
- Merkliste
 - Auf die Merkliste
 - Bewerten Bewerten
 - Teilen
 - Produkt teilen
 - Produkterinnerung
 - Produkterinnerung
 

							Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
							bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
						Hier können Sie sich einloggen
							Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
						
					
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The purpose of this book is to examine three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. It is ideal for a "capstone" course in mathematics for junior/senior level undergraduate mathematics students or first year graduate students. It could also be used as an alternative approach to an undergraduate abstract algebra course.
- Geräte: PC
 - ohne Kopierschutz
 - eBook Hilfe
 - Größe: 26.15MB
 
Andere Kunden interessierten sich auch für
Harold M. EdwardsEssays in Constructive Mathematics (eBook, PDF)96,95 €
R. E. EdwardsFourier Series (eBook, PDF)64,95 €
P. R. HalmosFinite-Dimensional Vector Spaces (eBook, PDF)34,95 €
Steffen KönigDerived Equivalences for Group Rings (eBook, PDF)40,95 €
Martin AignerProofs from THE BOOK (eBook, PDF)44,95 €
The Legacy of Alladi Ramakrishnan in the Mathematical Sciences (eBook, PDF)120,95 €
Gilbert BaumslagTopics in Combinatorial Group Theory (eBook, PDF)40,95 €- 				
 - 				
 - 				
 
					
					The purpose of this book is to examine three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. It is ideal for a "capstone" course in mathematics for junior/senior level undergraduate mathematics students or first year graduate students. It could also be used as an alternative approach to an undergraduate abstract algebra course.
				Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
					- Produktdetails
 - Verlag: Springer US
 - Seitenzahl: 210
 - Erscheinungstermin: 6. Dezember 2012
 - Englisch
 - ISBN-13: 9781461219286
 - Artikelnr.: 43992063
 
- Verlag: Springer US
 - Seitenzahl: 210
 - Erscheinungstermin: 6. Dezember 2012
 - Englisch
 - ISBN-13: 9781461219286
 - Artikelnr.: 43992063
 
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
 
The purpose of this book is to examine three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. It is ideal for a "capstone" course in mathematics for junior/senior level undergraduate mathematics students or first year graduate students. It could also be used as an alternative approach to an undergraduate abstract algebra course.
	1 Introduction and Historical Remarks.- 2 Complex Numbers.- 2.1 Fields and the Real Field.- 2.2 The Complex Number Field.- 2.3 Geometrical Representation of Complex Numbers.- 2.4 Polar Form and Euler's Identity.- 2.5 DeMoivre's Theorem for Powers and Roots.- Exercises.- 3 Polynomials and Complex Polynomials.- 3.1 The Ring of Polynomials over a Field.- 3.2 Divisibility and Unique Factorization of Polynomials.- 3.3 Roots of Polynomials and Factorization.- 3.4 Real and Complex Polynomials.- 3.5 The Fundamental Theorem of Algebra: Proof One.- 3.6 Some Consequences of the Fundamental Theorem.- Exercises.- 4 Complex Analysis and Analytic Functions.- 4.1 Complex Functions and Analyticity.- 4.2 The Cauchy-Riemann Equations.- 4.3 Conformal Mappings and Analyticity.- Exercises.- 5 Complex Integration and Cauchy's Theorem.- 5.1 Line Integrals and Green's Theorem.- 5.2 Complex Integration and Cauchy's Theorem.- 5.3 The Cauchy Integral Formula and Cauchy's Estimate.- 5.4 Liouville's Theorem and the Fundamental Theorem of Algebra: Proof Ttvo.- 5.5 Some Additional Results.- 5.6 Concluding Remarks on Complex Analysis.- Exercises.- 6 Fields and Field Extensions.- 6.1 Algebraic Field Extensions.- 6.2 Adjoining Roots to Fields.- 6.3 Splitting Fields.- 6.4 Permutations and Symmetric Polynomials.- 6.5 The Fundamental Theorem of Algebra: Proof Three.- 6.6 An Application-The Transcendence of e and ?.- 6.7 The Fundamental Theorem of Symmetric Polynomials.- Exercises.- 7 Galois Theory.- 7.1 Galois Theory Overview.- 7.2 Some Results From Finite Group Theory.- 7.3 Galois Extensions.- 7.4 Automorphisms and the Galois Group.- 7.5 The Fundamental Theorem of Galois Theory.- 7.6 The Fundamental Theorem of Algebra: Proof Four.- 7.7 Some Additional Applications of Galois Theory.- 7.8Algebraic Extensions of ? and Concluding Remarks.- Exercises.- 8 7bpology and Topological Spaces.- 8.1 Winding Number and Proof Five.- 8.2 Tbpology-An Overview.- 8.3 Continuity and Metric Spaces.- 8.4 Topological Spaces and Homeomorphisms.- 8.5 Some Further Properties of Topological Spaces.- Exercises.- 9 Algebraic Zbpology and the Final Proof.- 9.1 Algebraic lbpology.- 9.2 Some Further Group Theory-Abelian Groups.- 9.3 Homotopy and the Fundamental Group.- 9.4 Homology Theory and Triangulations.- 9.5 Some Homology Computations.- 9.6 Homology of Spheres and Brouwer Degree.- 9.7 The Fundamental Theorem of Algebra: Proof Six.- 9.8 Concluding Remarks.- Exercises.- Appendix A: A Version of Gauss's Original Proof.- Appendix B: Cauchy's Theorem Revisited.- Appendix C: Three Additional Complex Analytic Proofs of the Fundamental Theorem of Algebra.- Appendix D: Two More Ibpological Proofs of the Fundamental Theorem of Algebra.- Bibliography and References.
	1 Introduction and Historical Remarks.- 2 Complex Numbers.- 2.1 Fields and the Real Field.- 2.2 The Complex Number Field.- 2.3 Geometrical Representation of Complex Numbers.- 2.4 Polar Form and Euler's Identity.- 2.5 DeMoivre's Theorem for Powers and Roots.- Exercises.- 3 Polynomials and Complex Polynomials.- 3.1 The Ring of Polynomials over a Field.- 3.2 Divisibility and Unique Factorization of Polynomials.- 3.3 Roots of Polynomials and Factorization.- 3.4 Real and Complex Polynomials.- 3.5 The Fundamental Theorem of Algebra: Proof One.- 3.6 Some Consequences of the Fundamental Theorem.- Exercises.- 4 Complex Analysis and Analytic Functions.- 4.1 Complex Functions and Analyticity.- 4.2 The Cauchy-Riemann Equations.- 4.3 Conformal Mappings and Analyticity.- Exercises.- 5 Complex Integration and Cauchy's Theorem.- 5.1 Line Integrals and Green's Theorem.- 5.2 Complex Integration and Cauchy's Theorem.- 5.3 The Cauchy Integral Formula and Cauchy's Estimate.- 5.4 Liouville's Theorem and the Fundamental Theorem of Algebra: Proof Ttvo.- 5.5 Some Additional Results.- 5.6 Concluding Remarks on Complex Analysis.- Exercises.- 6 Fields and Field Extensions.- 6.1 Algebraic Field Extensions.- 6.2 Adjoining Roots to Fields.- 6.3 Splitting Fields.- 6.4 Permutations and Symmetric Polynomials.- 6.5 The Fundamental Theorem of Algebra: Proof Three.- 6.6 An Application-The Transcendence of e and ?.- 6.7 The Fundamental Theorem of Symmetric Polynomials.- Exercises.- 7 Galois Theory.- 7.1 Galois Theory Overview.- 7.2 Some Results From Finite Group Theory.- 7.3 Galois Extensions.- 7.4 Automorphisms and the Galois Group.- 7.5 The Fundamental Theorem of Galois Theory.- 7.6 The Fundamental Theorem of Algebra: Proof Four.- 7.7 Some Additional Applications of Galois Theory.- 7.8Algebraic Extensions of ? and Concluding Remarks.- Exercises.- 8 7bpology and Topological Spaces.- 8.1 Winding Number and Proof Five.- 8.2 Tbpology-An Overview.- 8.3 Continuity and Metric Spaces.- 8.4 Topological Spaces and Homeomorphisms.- 8.5 Some Further Properties of Topological Spaces.- Exercises.- 9 Algebraic Zbpology and the Final Proof.- 9.1 Algebraic lbpology.- 9.2 Some Further Group Theory-Abelian Groups.- 9.3 Homotopy and the Fundamental Group.- 9.4 Homology Theory and Triangulations.- 9.5 Some Homology Computations.- 9.6 Homology of Spheres and Brouwer Degree.- 9.7 The Fundamental Theorem of Algebra: Proof Six.- 9.8 Concluding Remarks.- Exercises.- Appendix A: A Version of Gauss's Original Proof.- Appendix B: Cauchy's Theorem Revisited.- Appendix C: Three Additional Complex Analytic Proofs of the Fundamental Theorem of Algebra.- Appendix D: Two More Ibpological Proofs of the Fundamental Theorem of Algebra.- Bibliography and References.
				






