The book reviews the basic components of data-driven project management by summarizing the current state-of-the-art methodologies, including the latest computer and machine learning algorithms and statistical methodologies, for project risk and control. It highlights the importance of artificial project data for academics, and describes the specific requirements such data must meet. In turn, the book discusses a wide variety of statistical methods available to generate these artificial data and shows how they have helped researchers to develop algorithms and tools to improve decision-making in project management. Moreover, it examines the relevance of project data from a professional standpoint and describes how professionals should collect empirical project data for better decision-making. Finally, the book introduces a new approach to data collection, generation, and analysis for creating project databases, making it relevant for academic researchers and professional project managers alike.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.