43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
43,95 €
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 14.97MB
Andere Kunden interessierten sich auch für
Alexander KechrisClassical Descriptive Set Theory (eBook, PDF)46,95 €
Bernd SchröderOrdered Sets (eBook, PDF)40,95 €
G. TakeutiIntroduction to Axiomatic Set Theory (eBook, PDF)68,95 €
N. BourbakiTheory of Sets (eBook, PDF)52,95 €
Bernd SchröderOrdered Sets (eBook, PDF)48,95 €
W. Hugh WoodinThe Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal (eBook, PDF)184,95 €
Heinz-Dieter EbbinghausEinführung in die Mengenlehre (eBook, PDF)26,99 €-
-
-
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer US
- Seitenzahl: 194
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461209034
- Artikelnr.: 44179961
- Verlag: Springer US
- Seitenzahl: 194
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461209034
- Artikelnr.: 44179961
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Naive Set Theory.- 1.1 What is a Set?.- 1.2 Operations on Sets.- 1.3 Notation for Sets.- 1.4 Sets of Sets.- 1.5 Relations.- 1.6 Functions.- 1.7 Well-Or der ings and Ordinals.- 1.8 Problems.- 2 The Zermelo-Fraenkel Axioms.- 2.1 The Language of Set Theory.- 2.2 The Cumulative Hierarchy of Sets.- 2.3 The Zermelo-Fraenkel Axioms.- 2.4 Classes.- 2.5 Set Theory as an Axiomatic Theory.- 2.6 The Recursion Principle.- 2.7 The Axiom of Choice.- 2.8 Problems.- 3 Ordinal and Cardinal Numbers.- 3.1 Ordinal Numbers.- 3.2 Addition of Ordinals.- 3.3 Multiplication of Ordinals.- 3.4 Sequences of Ordinals.- 3.5 Ordinal Exponentiation.- 3.6 Cardinality, Cardinal Numbers.- 3.7 Arithmetic of Cardinal Numbers.- 3.8 Regular and Singular Cardinals.- 3.9 Cardinal Exponentiation.- 3.10 Inaccessible Cardinals.- 3.11 Problems.- 4 Topics in Pure Set Theory.- 4.1 The Borel Hierarchy.- 4.2 Closed Unbounded Sets.- 4.3 Stationary Sets and Regressive Functions.- 4.4 Trees.- 4.5 Extensions of Lebesgue Measure.- 4.6 A Result About the GCH.- 5 The Axiom of Constructibility.- 5.1 Constructible Sets.- 5.2 The Constructible Hierarchy.- 5.3 The Axiom of Constructibility.- 5.4 The Consistency of V = L.- 5.5 Use of the Axiom of Constructibility.- 6 Independence Proofs in Set Theory.- 6.1 Some Undecidable Statements.- 6.2 The Idea of a Boolean-Valued Universe.- 6.3 The Boolean-Valued Universe.- 6.4 VB and V.- 6.5 Boolean-Valued Sets and Independence Proofs.- 6.6 The Nonprovability of the CH.- 7 Non-Well-Founded Set Theory.- 7.1 Set-Membership Diagrams.- 7.2 The Anti-Foundation Axiom.- 7.3 The Solution Lemma.- 7.4 Inductive Definitions Under AFA.- 7.5 Graphs and Systems.- 7.6 Proof of the Solution Lemma.- 7.7 Co-Inductive Definitions.- 7.8 A Model of ZF- +AFA.- Glossary of Symbols.
1 Naive Set Theory.- 1.1 What is a Set?.- 1.2 Operations on Sets.- 1.3 Notation for Sets.- 1.4 Sets of Sets.- 1.5 Relations.- 1.6 Functions.- 1.7 Well-Or der ings and Ordinals.- 1.8 Problems.- 2 The Zermelo-Fraenkel Axioms.- 2.1 The Language of Set Theory.- 2.2 The Cumulative Hierarchy of Sets.- 2.3 The Zermelo-Fraenkel Axioms.- 2.4 Classes.- 2.5 Set Theory as an Axiomatic Theory.- 2.6 The Recursion Principle.- 2.7 The Axiom of Choice.- 2.8 Problems.- 3 Ordinal and Cardinal Numbers.- 3.1 Ordinal Numbers.- 3.2 Addition of Ordinals.- 3.3 Multiplication of Ordinals.- 3.4 Sequences of Ordinals.- 3.5 Ordinal Exponentiation.- 3.6 Cardinality, Cardinal Numbers.- 3.7 Arithmetic of Cardinal Numbers.- 3.8 Regular and Singular Cardinals.- 3.9 Cardinal Exponentiation.- 3.10 Inaccessible Cardinals.- 3.11 Problems.- 4 Topics in Pure Set Theory.- 4.1 The Borel Hierarchy.- 4.2 Closed Unbounded Sets.- 4.3 Stationary Sets and Regressive Functions.- 4.4 Trees.- 4.5 Extensions of Lebesgue Measure.- 4.6 A Result About the GCH.- 5 The Axiom of Constructibility.- 5.1 Constructible Sets.- 5.2 The Constructible Hierarchy.- 5.3 The Axiom of Constructibility.- 5.4 The Consistency of V = L.- 5.5 Use of the Axiom of Constructibility.- 6 Independence Proofs in Set Theory.- 6.1 Some Undecidable Statements.- 6.2 The Idea of a Boolean-Valued Universe.- 6.3 The Boolean-Valued Universe.- 6.4 VB and V.- 6.5 Boolean-Valued Sets and Independence Proofs.- 6.6 The Nonprovability of the CH.- 7 Non-Well-Founded Set Theory.- 7.1 Set-Membership Diagrams.- 7.2 The Anti-Foundation Axiom.- 7.3 The Solution Lemma.- 7.4 Inductive Definitions Under AFA.- 7.5 Graphs and Systems.- 7.6 Proof of the Solution Lemma.- 7.7 Co-Inductive Definitions.- 7.8 A Model of ZF- +AFA.- Glossary of Symbols.







