The Newman Lectures on Transport Phenomena (eBook, ePUB)
Redaktion: Newman, John; Battaglia, Vincent
38,95 €
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
19 °P sammeln
38,95 €
Als Download kaufen
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
19 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
38,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
19 °P sammeln
The Newman Lectures on Transport Phenomena (eBook, ePUB)
Redaktion: Newman, John; Battaglia, Vincent
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book demonstrates how to solve for the velocity profile of the classic problems of fluid mechanics, starting with Navier-Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- John NewmanThe Newman Lectures on Mathematics (eBook, ePUB)38,95 €
- John S. NewmanThe Newman Lectures on Thermodynamics (eBook, ePUB)38,95 €
- The Newman Lectures on Transport Phenomena (eBook, PDF)38,95 €
- Joel L. PlawskyTransport Phenomena Fundamentals (eBook, ePUB)146,95 €
- Richard C. FarmerComputational Transport Phenomena for Engineering Analyses (eBook, ePUB)75,95 €
- John NewmanThe Newman Lectures on Mathematics (eBook, PDF)38,95 €
- John S. NewmanThe Newman Lectures on Thermodynamics (eBook, PDF)38,95 €
-
-
-
This book demonstrates how to solve for the velocity profile of the classic problems of fluid mechanics, starting with Navier-Stokes equation. It explains when it is appropriate to simplify a problem by neglecting certain terms through proper dimensional analysis.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 324
- Erscheinungstermin: 1. November 2020
- Englisch
- ISBN-13: 9781351609623
- Artikelnr.: 60028498
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 324
- Erscheinungstermin: 1. November 2020
- Englisch
- ISBN-13: 9781351609623
- Artikelnr.: 60028498
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
John Newman is Charles W. Tobias Chair of Electrochemistry (emeritus), Department of Chemical Engineering, UC Berkeley. At the same time, he was also a senior scientist and principal investigator at the Energy Technologies Area (ETA), Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA. He received his BS degree from Northwestern University, Illinois, USA, and MS degree and PhD from UC Berkeley. He has been a recipient of the Onsager Professorship, 2002, of the Norwegian University of Science and Technology, Trondheim, Norway. His current research focuses on the analysis and design of electrochemical systems, with batteries, fuel cells, turbulence, and renewable energy receiving the most attention. He is the author of over 300 technical publications, numerous plenary and invited lectures, and the book Electrochemical Systems. Vincent Battaglia is a research scientist at LBNL, where he heads the Energy Storage Group of the ETA. He received his BS degree in chemical engineering from Johns Hopkins University, Baltimore, USA, and his MS degree and PhD in chemical engineering from UC Berkeley with an emphasis in electrochemical engineering. He joined Argonne National Laboratory, Washington, DC, as a postdoctoral fellow and was later appointed as a chemical engineer, then technical coordinator for DOC PNGV office and coordinator of DOE VTO Battery Research there. He specializes in battery design, fabrication, and testing, and his current research focuses on the science of electrode formulation as it relates to manufacturing and performance. He has received the Pacesetter Award from Argonne National Laboratory, the DOE R&D Award, the 2013 R&D 100 Award, and the FMC Corporation external research collaboration award.
1. Conservation Laws and Transport Laws. 2. Fluid Mechanics. 3. Microscopic
Interpretation of the Momentum Flux. 4. Heat Transfer in a Pure Fluid. 5.
Concentrations and Velocities in Mixtures. 6. Material Balances and
Diffusion. 7. Relaxation Time for Diffusion. 8. Multicomponent Diffusion.
9. Heat Transfer in Mixtures. 10. Transport Properties. 11. Entropy
Production. 12. Coupled Transport Processes. 13. Introduction. 14. Simple
Flow Solutions. 15. Stokes Flow Past a Sphere. 16. Flow to a Rotating Disk.
17. Singular-Perturbation Expansions. 18. Creeping Flow Past a Sphere. 19.
Mass Transfer to a Sphere in Stokes Flow. 20. Mass Transfer to a Rotating
Disk. 21. Boundary-Layer Treatment of a Flat Plate. 22. Boundary-Layer
Equations of Fluid Mechanics. 23. Curved Surfaces and Blasius Series. 24.
The Diffusion Boundary Layer. 25. Blasius Series for Mass Transfer. 26.
Graetz-Nusselt-Lévêque Problem. 27. Natural Convection. 28. High Rates of
Mass Transfer. 29. Heterogeneous Reaction at a Flat Plate. 30. Mass
Transfer to the Rear of a Sphere in Stokes Flow. 31. Spin Coating. 32.
Stefan-Maxwell Mass Transport. 33. Turbulent Flow and Hydrodynamic
Stability. 34. Time Averages and Turbulent Transport. 35. Universal
Velocity Profile and Eddy Viscosity. 36. Turbulent Flow in a Pipe. 37.
Integral Momentum Method for Boundary Layers. 38. Use of Universal Eddy
Viscosity for Turbulent Boundary Layers. 39. Mass Transfer in Turbulent
Flow. 40. Mass Transfer in Turbulent Pipe Flow. 41. Mass Transfer in
Turbulent Boundary Layers. 42. New Perspective in Turbulence.
Interpretation of the Momentum Flux. 4. Heat Transfer in a Pure Fluid. 5.
Concentrations and Velocities in Mixtures. 6. Material Balances and
Diffusion. 7. Relaxation Time for Diffusion. 8. Multicomponent Diffusion.
9. Heat Transfer in Mixtures. 10. Transport Properties. 11. Entropy
Production. 12. Coupled Transport Processes. 13. Introduction. 14. Simple
Flow Solutions. 15. Stokes Flow Past a Sphere. 16. Flow to a Rotating Disk.
17. Singular-Perturbation Expansions. 18. Creeping Flow Past a Sphere. 19.
Mass Transfer to a Sphere in Stokes Flow. 20. Mass Transfer to a Rotating
Disk. 21. Boundary-Layer Treatment of a Flat Plate. 22. Boundary-Layer
Equations of Fluid Mechanics. 23. Curved Surfaces and Blasius Series. 24.
The Diffusion Boundary Layer. 25. Blasius Series for Mass Transfer. 26.
Graetz-Nusselt-Lévêque Problem. 27. Natural Convection. 28. High Rates of
Mass Transfer. 29. Heterogeneous Reaction at a Flat Plate. 30. Mass
Transfer to the Rear of a Sphere in Stokes Flow. 31. Spin Coating. 32.
Stefan-Maxwell Mass Transport. 33. Turbulent Flow and Hydrodynamic
Stability. 34. Time Averages and Turbulent Transport. 35. Universal
Velocity Profile and Eddy Viscosity. 36. Turbulent Flow in a Pipe. 37.
Integral Momentum Method for Boundary Layers. 38. Use of Universal Eddy
Viscosity for Turbulent Boundary Layers. 39. Mass Transfer in Turbulent
Flow. 40. Mass Transfer in Turbulent Pipe Flow. 41. Mass Transfer in
Turbulent Boundary Layers. 42. New Perspective in Turbulence.
1. Conservation Laws and Transport Laws. 2. Fluid Mechanics. 3. Microscopic
Interpretation of the Momentum Flux. 4. Heat Transfer in a Pure Fluid. 5.
Concentrations and Velocities in Mixtures. 6. Material Balances and
Diffusion. 7. Relaxation Time for Diffusion. 8. Multicomponent Diffusion.
9. Heat Transfer in Mixtures. 10. Transport Properties. 11. Entropy
Production. 12. Coupled Transport Processes. 13. Introduction. 14. Simple
Flow Solutions. 15. Stokes Flow Past a Sphere. 16. Flow to a Rotating Disk.
17. Singular-Perturbation Expansions. 18. Creeping Flow Past a Sphere. 19.
Mass Transfer to a Sphere in Stokes Flow. 20. Mass Transfer to a Rotating
Disk. 21. Boundary-Layer Treatment of a Flat Plate. 22. Boundary-Layer
Equations of Fluid Mechanics. 23. Curved Surfaces and Blasius Series. 24.
The Diffusion Boundary Layer. 25. Blasius Series for Mass Transfer. 26.
Graetz-Nusselt-Lévêque Problem. 27. Natural Convection. 28. High Rates of
Mass Transfer. 29. Heterogeneous Reaction at a Flat Plate. 30. Mass
Transfer to the Rear of a Sphere in Stokes Flow. 31. Spin Coating. 32.
Stefan-Maxwell Mass Transport. 33. Turbulent Flow and Hydrodynamic
Stability. 34. Time Averages and Turbulent Transport. 35. Universal
Velocity Profile and Eddy Viscosity. 36. Turbulent Flow in a Pipe. 37.
Integral Momentum Method for Boundary Layers. 38. Use of Universal Eddy
Viscosity for Turbulent Boundary Layers. 39. Mass Transfer in Turbulent
Flow. 40. Mass Transfer in Turbulent Pipe Flow. 41. Mass Transfer in
Turbulent Boundary Layers. 42. New Perspective in Turbulence.
Interpretation of the Momentum Flux. 4. Heat Transfer in a Pure Fluid. 5.
Concentrations and Velocities in Mixtures. 6. Material Balances and
Diffusion. 7. Relaxation Time for Diffusion. 8. Multicomponent Diffusion.
9. Heat Transfer in Mixtures. 10. Transport Properties. 11. Entropy
Production. 12. Coupled Transport Processes. 13. Introduction. 14. Simple
Flow Solutions. 15. Stokes Flow Past a Sphere. 16. Flow to a Rotating Disk.
17. Singular-Perturbation Expansions. 18. Creeping Flow Past a Sphere. 19.
Mass Transfer to a Sphere in Stokes Flow. 20. Mass Transfer to a Rotating
Disk. 21. Boundary-Layer Treatment of a Flat Plate. 22. Boundary-Layer
Equations of Fluid Mechanics. 23. Curved Surfaces and Blasius Series. 24.
The Diffusion Boundary Layer. 25. Blasius Series for Mass Transfer. 26.
Graetz-Nusselt-Lévêque Problem. 27. Natural Convection. 28. High Rates of
Mass Transfer. 29. Heterogeneous Reaction at a Flat Plate. 30. Mass
Transfer to the Rear of a Sphere in Stokes Flow. 31. Spin Coating. 32.
Stefan-Maxwell Mass Transport. 33. Turbulent Flow and Hydrodynamic
Stability. 34. Time Averages and Turbulent Transport. 35. Universal
Velocity Profile and Eddy Viscosity. 36. Turbulent Flow in a Pipe. 37.
Integral Momentum Method for Boundary Layers. 38. Use of Universal Eddy
Viscosity for Turbulent Boundary Layers. 39. Mass Transfer in Turbulent
Flow. 40. Mass Transfer in Turbulent Pipe Flow. 41. Mass Transfer in
Turbulent Boundary Layers. 42. New Perspective in Turbulence.