68,95 €
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
68,95 €
Als Download kaufen
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
34 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
68,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
34 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
NURBS (non-uniform rational B-splines) are a geometric tool used for computer-aided design. This book introduces all aspects of NURBS at a level suitable for both students and implementors.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 36.45MB
Andere Kunden interessierten sich auch für
Geometric Constraint Solving and Applications (eBook, PDF)40,95 €
Combinatorial Geometry and Graph Theory (eBook, PDF)40,95 €
Beat BrüderlinComputergrafik und Geometrisches Modellieren (eBook, PDF)34,99 €
Wolfram LutherMathematische Grundlagen der Computergraphik (eBook, PDF)42,99 €
David SalomonTransformations and Projections in Computer Graphics (eBook, PDF)40,95 €
Les PieglThe NURBS Book (eBook, PDF)62,95 €
Brian A. BarskyComputer Graphics and Geometric Modeling Using Beta-splines (eBook, PDF)40,95 €-
-
-
NURBS (non-uniform rational B-splines) are a geometric tool used for computer-aided design. This book introduces all aspects of NURBS at a level suitable for both students and implementors.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 646
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642592232
- Artikelnr.: 53128506
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 646
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642592232
- Artikelnr.: 53128506
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
One Curve and Surface Basics.- 1.1 Implicit and Parametric Forms.- 1.2 Power Basis Form of a Curve.- 1.3 Bézier Curves.- 1.4 Rational Bézier Curves.- 1.5 Tensor Product Surfaces.- Exercises.- Two B-Spline Basis Functions.- 2.1 Introduction.- 2.2 Definition and Properties of B-spline Basis Functions.- 2.3 Derivatives of B-spline Basis Functions.- 2.4 Further Properties of the Basis Functions.- 2.5 Computational Algorithms.- Exercises.- Three B-spline Curves and Surfaces.- 3.1 Introduction.- 3.2 The Definition and Properties of B-spline Curves.- 3.3 The Derivatives of a B-spline Curve.- 3.4 Definition and Properties of B-spline Surfaces.- 3.5 Derivatives of a B-spline Surface.- Exercises.- Four Rational B-spline Curves and Surfaces.- 4.1 Introduction.- 4.2 Definition and Properties of NURBS Curves.- 4.3 Derivatives of a NURBS Curve.- 4.4 Definition and Properties of NURBS Surfaces.- 4.5 Derivatives of a NURBS Surface.- Exercises.- Five Fundamental Geometric Algorithms.- 5.1 Introduction.- 5.2 Knot Insertion.- 5.3 Knot Refinement.- 5.4 Knot Removal.- 5.5 Degree Elevation.- 5.6 Degree Reduction.- Exercises.- Six Advanced Geometric Algorithms.- 6.1 Point Inversion and Projection for Curves and Surfaces.- 6.2 Surface Tangent Vector Inversion.- 6.3 Transformations and Projections of Curves and Surfaces.- 6.4 Reparameterization of NURBS Curves and Surfaces.- 6.5 Curve and Surface Reversal.- 6.6 Conversion Between B-spline and Piecewise Power Basis Forms.- Exercises.- Seven Conics and Circles.- 7.1 Introduction.- 7.2 Various Forms for Representing Conics.- 7.3 The Quadratic Rational Bézier Arc.- 7.4 Infinite Control Points.- 7.5 Construction of Circles.- 7.6 Construction of Conies.- 7.7 Conic Type Classification and Form Conversion.- 7.8 Higher Order Circles.- Exercises.-Eight Construction of Common Surfaces.- 8.1 Introduction.- 8.2 Bilinear Surfaces.- 8.3 The General Cylinder.- 8.4 The Ruled Surface.- 8.5 The Surface of Revolution.- 8.6 Nonuniform Scaling of Surfaces.- 8.7 A Three-sided Spherical Surface.- Nine Curve and Surface Fitting.- 9.1 Introduction.- 9.2 Global Interpolation.- 9.3 Local Interpolation.- 9.4 Global Approximation.- 9.5 Local Approximation.- Exercises.- Ten Advanced Surface Construction Techniques.- 10.1 Introduction.- 10.2 Swung Surfaces.- 10.3 Skinned Surfaces.- 10.4 Swept Surfaces.- 10.5 Interpolation of a Bidirectional Curve Network.- 10.6 Coons Surfaces.- Eleven Shape Modification Tools.- 11.1 Introduction.- 11.2 Control Point Repositioning.- 11.3 Weight Modification.- 11.4 Shape Operators.- 11.5 Constraint-based Curve and Surface Shaping.- Twelve Standards and Data Exchange.- 12.1 Introduction.- 12.2 Knot Vectors.- 12.3 Nurbs Within the Standards.- 12.4 Data Exchange to and from a NURBS System.- Thirteen B-spline Programming Concepts.- 13.1 Introduction.- 13.2 Data Types and Portability.- 13.3 Data Structures.- 13.4 Memory Allocation.- 13.5 Error Control.- 13.6 Utility Routines.- 13.7 Arithmetic Routines.- 13.8 Example Programs.- 13.9 Additional Structures.- 13.10 System Structure.- References.
One Curve and Surface Basics.- 1.1 Implicit and Parametric Forms.- 1.2 Power Basis Form of a Curve.- 1.3 Bézier Curves.- 1.4 Rational Bézier Curves.- 1.5 Tensor Product Surfaces.- Exercises.- Two B-Spline Basis Functions.- 2.1 Introduction.- 2.2 Definition and Properties of B-spline Basis Functions.- 2.3 Derivatives of B-spline Basis Functions.- 2.4 Further Properties of the Basis Functions.- 2.5 Computational Algorithms.- Exercises.- Three B-spline Curves and Surfaces.- 3.1 Introduction.- 3.2 The Definition and Properties of B-spline Curves.- 3.3 The Derivatives of a B-spline Curve.- 3.4 Definition and Properties of B-spline Surfaces.- 3.5 Derivatives of a B-spline Surface.- Exercises.- Four Rational B-spline Curves and Surfaces.- 4.1 Introduction.- 4.2 Definition and Properties of NURBS Curves.- 4.3 Derivatives of a NURBS Curve.- 4.4 Definition and Properties of NURBS Surfaces.- 4.5 Derivatives of a NURBS Surface.- Exercises.- Five Fundamental Geometric Algorithms.- 5.1 Introduction.- 5.2 Knot Insertion.- 5.3 Knot Refinement.- 5.4 Knot Removal.- 5.5 Degree Elevation.- 5.6 Degree Reduction.- Exercises.- Six Advanced Geometric Algorithms.- 6.1 Point Inversion and Projection for Curves and Surfaces.- 6.2 Surface Tangent Vector Inversion.- 6.3 Transformations and Projections of Curves and Surfaces.- 6.4 Reparameterization of NURBS Curves and Surfaces.- 6.5 Curve and Surface Reversal.- 6.6 Conversion Between B-spline and Piecewise Power Basis Forms.- Exercises.- Seven Conics and Circles.- 7.1 Introduction.- 7.2 Various Forms for Representing Conics.- 7.3 The Quadratic Rational Bézier Arc.- 7.4 Infinite Control Points.- 7.5 Construction of Circles.- 7.6 Construction of Conies.- 7.7 Conic Type Classification and Form Conversion.- 7.8 Higher Order Circles.- Exercises.-Eight Construction of Common Surfaces.- 8.1 Introduction.- 8.2 Bilinear Surfaces.- 8.3 The General Cylinder.- 8.4 The Ruled Surface.- 8.5 The Surface of Revolution.- 8.6 Nonuniform Scaling of Surfaces.- 8.7 A Three-sided Spherical Surface.- Nine Curve and Surface Fitting.- 9.1 Introduction.- 9.2 Global Interpolation.- 9.3 Local Interpolation.- 9.4 Global Approximation.- 9.5 Local Approximation.- Exercises.- Ten Advanced Surface Construction Techniques.- 10.1 Introduction.- 10.2 Swung Surfaces.- 10.3 Skinned Surfaces.- 10.4 Swept Surfaces.- 10.5 Interpolation of a Bidirectional Curve Network.- 10.6 Coons Surfaces.- Eleven Shape Modification Tools.- 11.1 Introduction.- 11.2 Control Point Repositioning.- 11.3 Weight Modification.- 11.4 Shape Operators.- 11.5 Constraint-based Curve and Surface Shaping.- Twelve Standards and Data Exchange.- 12.1 Introduction.- 12.2 Knot Vectors.- 12.3 Nurbs Within the Standards.- 12.4 Data Exchange to and from a NURBS System.- Thirteen B-spline Programming Concepts.- 13.1 Introduction.- 13.2 Data Types and Portability.- 13.3 Data Structures.- 13.4 Memory Allocation.- 13.5 Error Control.- 13.6 Utility Routines.- 13.7 Arithmetic Routines.- 13.8 Example Programs.- 13.9 Additional Structures.- 13.10 System Structure.- References.







