Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students.
Features
- Provides an overview of the methods and applications of pattern recognition of time series
- Covers a wide range of techniques, including unsupervised and supervised approaches
- Includes a range of real examples from medicine, finance, environmental science, and more
- R and MATLAB code, and relevant data sets are available on a supplementary website
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Maria Ivanchuk, ISCB News, July 2020
"The authors of this book have more than 20 years of experience on the topic of time series clustering and classification. They consolidate many important methods and algorithms commonly used in time series clustering and classification practices published by various scientific journals. In addition, they provide Matlab and R code and corresponding datasets to reproduce the examples in the book...This book covers most classical and common techniques for time series clustering and classification. It consolidates different methods into an extensive coherent framework. This makes the book a good reference for students and researchers."
- Ming Chen, JASA, August 2020