The book provides the foundation of time series methods, including linear filters and a geometric approach to prediction. The important paradigm of ARMA models is studied in-depth, as well as frequency domain methods. Entropy and other information theoretic notions are introduced, with applications to time series modeling. The second half of the book focuses on statistical inference, the fitting of time series models, as well as computational facets of forecasting. Many time series of interest are nonlinear in which case classical inference methods can fail, but bootstrap methods may come to the rescue. Distinctive features of the book are the emphasis on geometric notions and the frequency domain, the discussion of entropy maximization, and a thorough treatment of recent computer-intensive methods for time series such as subsampling and the bootstrap. There are more than 600 exercises, half of which involve R coding and/or data analysis. Supplements include a website with 12 key data sets and all R code for the book's examples, as well as the solutions to exercises.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
~International Statistical Review
"The first eight chapters of this book mainly focus on understanding the structure of time series. From the ninth chapter onwards, they discuss statistical inference based on time series data...Since the book includes a large number of exercises, teachers of a course on time series may find this book useful. Overall, researchers working in the area of time series may also find this book a useful reference. Finally, applied researchers involved with time series data may also find this book helpful." ~ISCB News
"This new monograph by McElroy (US Census Bureau) and Politis (Univ. of California, San Diego) is a timely publication, whereas the more well-known time series monographs were published long ago (in the 1980s and 1990s).. this volume stands out as an ideal source for readers exploring time series analysis both theoretically and empirically...Some unique topics are introduced, for example, information entropy in time series, time-series-specific statistical inference, and dependent data bootstrapping. The latter represents an important recent advancement in time series analysis."
~CHOICE








